聚焦在Buffer Pool的本职功能上,从其提供的接口、内存组织方式、Page获取、刷脏等方面进行介绍
Dataphin v3.13引入了跨节点参数功能,允许任务间传递消息。输出节点(如SQL、Shell、Python任务)能输出参数,输入节点可以接收并使用这些参数。此功能解决了通过公共存储中转消息的复杂性和低效问题。应用场景包括:金融企业的币种转换,其中汇率任务(输出节点)提供汇率,转换任务(输入节点)使用该汇率;以及产品目录更新检查,通过跨节点参数控制是否需要执行数据导入任务。用户可以通过任务编辑器设置和传递跨节点参数,并在运维中进行补数据操作。
本文简要讨论了使用流量泳道来实现全链路流量灰度管理的场景与方案,并回顾了阿里云服务网格 ASM 提供的严格与宽松两种模式的流量泳道、以及这两种模式各自的优势与挑战。接下来介绍了一种基于 OpenTelemetry 社区提出的 baggage 透传能力实现的无侵入式的宽松模式泳道,这种类型的流量泳道同时具有对业务代码侵入性低、同时保持宽松模式的灵活特性的特点。同时,我们还介绍了新的基于权重的流量引流策略,这种策略可以基于统一的流量匹配规则,将匹配到的流量以设定好的比例分发到不同的流量泳道。
本文主要就Dubbo应用如何接入服务网格、获得各项云原生能力进行了探讨,并提出了最佳实践以及过渡两种实践场景。我们首先推荐您使用Dubbo社区提供的最佳实践场景来接入服务网格,在必要时可以通过过渡方案来向最佳实践方案逐步实现过渡。
本⽂对 Prompt 的使用方式进行了简单介绍,让大家了解到 Prompt 对于 LLM 的重要性。并尝试在 Prompt 中结合用户 Geo IP 信息,实现 LLM 的个性化回复,提升问答的准确度。
本文将介绍阿里云如何将 Serverless 架构应用于消息队列,有效降低运营成本,同时利用云原生环境的特性,为 IoT 设备提供快速响应和灵活伸缩的通讯能力。
为增强对 Python 应用,特别是 Python LLM 应用的可观测性,阿里云推出了 Python 探针,旨在解决 LLM 应用落地难、难落地等问题。助力企业落地 LLM。本文将从阿里云 Python 探针的接入步骤、产品能力、兼容性等方面展开介绍。并提供一个简单的 LLM 应用例子,方便测试。
本文将演示如何使用事件总线(EventBridge),向量检索服务(DashVector),函数计算(FunctionCompute)结合灵积模型服务[1]上的 Embedding API[2],来从 0 到 1 构建基于文本索引的构建+向量检索基础上的语义搜索能力。具体来说,我们将基于 OSS 文本文档动态插入数据,进行实时的文本语义搜索,查询最相似的相关内容。
近年来,针对网站的攻击形式愈发多样,手段也变得更加隐蔽,使用浏览器拨测来监控服务的整个生命周期有助于及时发现攻击,保护核心业务链路不受损。阿里云监控浏览器拨测使用真实的浏览器进行拨测,通过提供丰富的断言能力和脚本录制能力护航服务的全生命周期和核心业务链路,助力开发者更好地监控服务的可用性,消除潜在风险。