Qwen团队推出了新成员QVQ-72B-preview,这是一个专注于提升视觉推理能力的实验性研究模型。提升了视觉表示的效率和准确性。它在多模态评测集如MMMU、MathVista和MathVision上表现出色,尤其在数学推理任务中取得了显著进步。尽管如此,该模型仍存在一些局限性,仍在学习和完善中。
阿里云云消息队列 Kafka 版 Serverless 系列凭借其卓越的弹性能力,为道旅科技提供了灵活高效的数据流处理解决方案。无论是应对突发流量还是规划长期资源需求,该方案均能帮助企业实现资源动态调整和成本优化,同时保障业务的高可用性和连续性。
对于正在使用 GitLab 国际站托管代码的企业和研发团队,除迁移至极狐 GitLab 外,国内其他主流的 DevOps 平台也具有完备的产品能力,为开发者提供了更多的选择。其中,阿里云云效也提供了针对常见代码托管平台如 GitHub、GitLab 简单便捷的迁移方案,帮助用户快速完成核心代码数据的迁移,确保代码资产安全。
推理性能的提升涉及底层硬件、模型层,以及其他各个软件中间件层的相互协同,因此了解大模型技术架构的全局视角,有助于我们对推理性能的优化方案进行评估和选型。
为了构建现代化的可观测数据采集器LoongCollector,iLogtail启动架构通用化升级,旨在提供高可靠、高可扩展和高性能的实时数据采集和计算服务。然而,通用化的过程总会伴随性能劣化,本文重点介绍LoongCollector的性能优化之路,并对通用化和高性能之间的平衡给出见解。
SLS 全新推出的「SQL 完全精确」模式,通过“限”与“换”的策略切换,在快速分析与精确计算之间实现平衡,满足用户对于超大数据规模分析结果精确的刚性需求。标志着其在超大规模日志数据分析领域再次迈出了重要的一步。
在 2.0 阶段,我们目标是实现面向任务的协同编码模式,人的主要职责转变为任务的下发、干预以及最后结果的审查。在这个过程中,人的实际工作量开始减轻,AI 工作的占比显著提升。目前的 2.0 版本是我们最近上线的。