目前阿里云 ARMS 已经基于 LLM 大模型实现了单链路智能诊断,综合调用链、方法栈、异常堆栈、SQL、指标等多模态数据,结合链路诊断领域专家经验,有效识别单次请求的错慢根因,并给出相应的优化建议。
将 Qwen2.5 模型部署于函数计算 FC,用户能依据业务需求调整资源配置,有效应对高并发场景,并通过优化资源配置,如调整实例规格、多 GPU 部署和模型量化来提升推理速度。此外,函数计算支持多样化 GPU 计费模式(按需计费、阶梯定价、极速模式),可根据业务需求调整,在面对高频请求和大规模数据处理时,能够显著降低综合成本。
当前,函数计算 FC 已被广泛应用在各种 AI 场景下,函数计算支持通过使用容器镜像部署 AI 推理应用,并且提供多种选项来访问训练好的模型。为了帮助开发者高效地在函数计算上部署 AI 推理应用,并快速解决不同场景下的模型存储选型问题,本文将对函数计算的 GPU 模型存储的优缺点及适用场景进行对比分析,以期为您的模型存储决策提供帮助。
客户机房迁移过程中,发现不同 Pod 副本耗时前后相差 5 倍,本文介绍如何通过 ARMS 代码热点功能进行快速定位。
Nydus+Dragonfly 组合减少容器启动过程中镜像的拉取时间,提升集群间的镜像分发效率。
本文是系列文章的第一篇,介绍第一个重要话题:“数据库的分布式事务”,这也是目前普通用户面对分布式数据库产品介绍问的最多的一个内容,如何有效评测分布式事务也是一个非常重要的能力。致敬同行,我们将PolarDB-X事务架构设计上的一些思考和测试方式,做了整理和梳理,期望能对大家更好的理解分布式事务的测试有所帮助。
本文将介绍阿里云云原生大数据计算服务MaxCompute湖仓一体近实时增量处理技术架构的核心设计和应用场景。
中间件产品门槛高?短时间无法深入了解?免费试用+30秒一键体验,低代码,无部署环境,带你了解“历经万亿级数据洪峰考验”的云消息队列RocketMQ。