官方博客-第21页-阿里云开发者社区

  • 2024-11-01
    969

    Serverless GPU:助力 AI 推理加速

    近年来,AI 技术发展迅猛,企业纷纷寻求将 AI 能力转化为商业价值,然而,在部署 AI 模型推理服务时,却遭遇成本高昂、弹性不足及运维复杂等挑战。本文将探讨云原生 Serverless GPU 如何从根本上解决这些问题,以实现 AI 技术的高效落地。

  • 2024-12-04
    582

    C5GAME 游戏饰品交易平台借助 RocketMQ Serverless 保障千万级玩家流畅体验

    游戏行业蓬勃发展,作为国内领先的 STEAM 游戏饰品交易的服务平台,看 C5GAME 如何利用 RocketMQ Serverless 技术,为千万级玩家提供流畅的游戏体验,同时降低成本并提升运维效率。

  • 2024-12-06
    1031

    【实战干货】AI大模型工程应用于车联网场景的实战总结

    本文介绍了图像生成技术在AIGC领域的发展历程、关键技术和当前趋势,以及这些技术如何应用于新能源汽车行业的车联网服务中。

    1,031
  • 2025-01-24
    443

    任务调度企业级场景下的新选择,兼容 XXL-JOB 通信协议

    XXL-JOB 是一个开源的分布式任务调度平台,开箱即用、简单易上手,得到了很多开发者的喜爱。和其他中间件开源项目一样,当开发者把开源项目部署到公共云,应用到企业级场景中时,就会在稳定性、性能、安全、其他云产品间集成体验上提出更高的要求。基于此背景,阿里云微服务引擎 MSE 基于自研的分布式任务调度平台 SchedulerX,通过兼容 XXL-JOB 客户端的通信协议,在开源 XXL-JOB 版本的基础上,提升了稳定性、安全、性能、可观测等能力,满足企业客户的需求。此外,为方便测试,提供了一个月 400 元额度的免费试用和预付费首购 5 折、续费 6.5 折起的优惠。

  • 2025-02-20
    644

    大模型推理服务全景图

    推理性能的提升涉及底层硬件、模型层,以及其他各个软件中间件层的相互协同,因此了解大模型技术架构的全局视角,有助于我们对推理性能的优化方案进行评估和选型。

    644
  • 2025-02-20
    706

    破解 vLLM + DeepSeek 规模化部署的“不可能三角”

    vLLM 是一种便捷的大型语言模型(LLM)推理服务,旨在简化个人和企业用户对复杂模型的使用。通过 vLLM,用户可以轻松发起推理请求,享受高效、稳定的 LLM 服务。针对大规模部署 vLLM 的挑战,如大模型参数量、高效推理能力和上下文理解等,阿里云函数计算(FC)提供了 GPU 预留实例闲置计费功能,优化了性能、成本和稳定性之间的平衡。此外,FC 支持简便的部署流程和多种应用集成方式,帮助企业快速上线并管理 vLLM 服务。总结来说,vLLM 结合 FC 的解决方案为企业提供了强大的技术支持和灵活的部署选项,满足不同业务需求。

    706
  • 2023-09-15
    120024

    Hologres RoaringBitmap实践,千亿级画像数据秒级分析

    本文将会分享Hologres RoaringBitmap 方案在画像分析的应用实践,实现更快更准的画像分析。

    120,024
  • 2024-05-15
    105529

    SLS 大模型可观测&安全推理审计标准解决方案

    本文介绍大模型可观测&安全推理审计解决方案和Demo演示,SLS 提供全面的 LLM 监控和日志记录功能。监控大模型使用情况和性能,自定义仪表盘;SLS 汇总 Actiontrail 事件、云产品可观测日志、LLM 网关明细日志、详细对话明细日志、Prompt Trace 和推理实时调用明细等数据,建设完整统一的大模型可观测方案,为用户的大模型安全推理审计提供全面合规支持。

    105,529
  • 2024-05-15
    133383

    谈谈 RocketMQ 5.0 分级存储背后一些有挑战的技术优化

    谈谈 RocketMQ 5.0 分级存储背后一些有挑战的技术优化

    133,383
  • 1
    ...
    20
    21
    22
    ...
    60
    到第