在今天这样以AIGC为代表的AI时代下,了解训练场景对于存储的具体诉求同样是至关重要的。本文将尝试解读WEKA的一个相关报告,来看看AIGC对于存储有哪些具体的性能要求。
Mistral AI在3月24日突然发布并开源了 Mistral 7B v0.2模型,有如下几个特点
聚焦在Buffer Pool的本职功能上,从其提供的接口、内存组织方式、Page获取、刷脏等方面进行介绍
本文讨论了微服务上云过程中的稳定性挑战,特别是变更引起的生产故障。阿里云MSE(微服务引擎)提供了一种全链路无损发布方案,旨在消除变更风险,实现白天流量高峰时的安全发布。
在本文中,作者探讨了ZooKeeper(ZK)的一个内存占用问题,特别是当有大量的Watcher和ZNode时,导致的内存消耗。
本文主要就Dubbo应用如何接入服务网格、获得各项云原生能力进行了探讨,并提出了最佳实践以及过渡两种实践场景。我们首先推荐您使用Dubbo社区提供的最佳实践场景来接入服务网格,在必要时可以通过过渡方案来向最佳实践方案逐步实现过渡。
阿里云云原生数据仓库AnalyticDB MySQL(ADB-M)与被OpenAI收购的实时分析数据库Rockset对比,两者在架构设计上有诸多相似点,例如存算分离、实时写入等,但ADB-M在多个方面展现出了更为成熟和先进的特性。ADB-M支持更丰富的弹性能力、强一致实时数据读写、全面的索引类型、高吞吐写入、完备的DML和Online DDL操作、智能的数据生命周期管理。在向量检索与分析上,ADB-M提供更高检索精度。ADB-M设计原理包括分布式表、基于Raft协议的同步层、支持DML和DDL的引擎层、高性能低成本的持久化层,这些共同确保了ADB-M在AI时代作为实时数据仓库的高性能与高性价比