官方博客-第67页-阿里云开发者社区

  • 2024-05-15
    1964

    阿里云SDWAN解决方案部署指南

    利用阿里云丰富云网络产品,提供完整的SDWAN企业分支互联/企业上云解决方案。本次SDWAN解决方案部署指导场景以解决企业大陆分支机构、亚太IDC及云上VPC构建企业办公组网为例。意在指导客户在项目部署实施阶段可参考本文自助完成业务上线的搭建。本文内容已经对外披露。

    1,964
  • 2024-05-15
    781

    【最佳实践】主机场景下如何使用ilogtail采集超大规模文件

    目标读者数字化系统开发运维(DevOps)工程师、稳定性工程师(SRE)、可观测平台运维人员等。使用场景客户的某些场景下,业务拆分的比较细,每个业务会定时输出一个日志文件(比如每小时输出一个文件),那么在一台机器上,可能会产生大量的日志文件。由于某些原因,用户不想在业务服务器上安装采集端,因此采用比...

  • 2024-05-15
    1813

    阿里云全球跨地域网络互通方案

    随着企业客户上云的深入,越来越多的客户会选择在阿里云全球region多地部署其企业业务系统,以便其全球化业务的迅速开展。阿里云在云上有非常丰富云网络产品,来协助企业客户在全球region迅速构建云上多个地域的互联互通,帮忙企业客户快速实现业务上线。本章节为您介绍如何使用云企业网转发路由器CEN-TR(Transit Router),来实现客户本地多个不同城市数据中心IDC(Internet Data Center)和云上VPC跨地域互通互联。

    1,813
  • 【深度】企业 AI 落地实践(四):如何构建端到端的 AI 应用观测体系

    本文探讨了AI应用在实际落地过程中面临的三大核心问题:如何高效使用AI模型、控制成本以及保障输出质量。文章详细分析了AI应用的典型架构,并提出通过全栈可观测体系实现从用户端到模型推理层的端到端监控与诊断。结合阿里云的实践经验,介绍了基于OpenTelemetry的Trace全链路追踪、关键性能指标(如TTFT、TPOT)采集、模型质量评估与MCP工具调用观测等技术手段,帮助企业在生产环境中实现AI应用的稳定、高效运行。同时,针对Dify等低代码平台的应用部署与优化提供了具体建议,助力企业构建可扩展、可观测的AI应用体系。

  • 2024-05-15
    797

    PolarDB 开源版 使用TimescaleDB 实现时序数据高速写入、压缩、实时聚合计算、自动老化等

    背景PolarDB 的云原生存算分离架构, 具备低廉的数据存储、高效扩展弹性、高速多机并行计算能力、高速数据搜索和处理; PolarDB与计算算法结合, 将实现双剑合璧, 推动业务数据的价值产出, 将数据变成生产力.本文将介绍PolarDB 开源版 使用TimescaleDB 实现时序数据高速写入、...

    797
  • 2024-05-15
    574

    通过HBR实现NAS容灾方案

    本文介绍如何基于NAS+云上备份HBR实现云文件数据容灾。

    574
  • 2024-05-15
    769

    企业用户认证及文件权限控制-手把手指南

    本篇文章模拟一个企业级用户需求,手把手的描述企业级客户如何使用阿里云文件存储 NAS 实现云办公,实现多用户数据共享与隔离。

    769
  • 3个月,上百家企业交流,和大家聊聊AI应用的落地实践(开篇)

    企业希望自己的业务被 AI 赋能的诉求是强烈的,但大多数企业是不知道从哪里下手的

  • 2024-05-15
    1085

    DB2下移分布式数据库OceanBase单元化重构最佳实践

    DB2下移分布式数据库OceanBase单元化重构最佳实践。

    1,085
  • 1
    ...
    66
    67
    68
    ...
    82
    到第