当我们熟悉了通义灵码的使用以及 Notebook 的环境后,大家可以共同探索 AIGC 的应用的更多玩法。
本文介绍了使用阿里云实时数仓 Hologres、函数计算 FC 和通义大模型 Qwen3 构建企业级数据分析 Agent 的方法。通过 MCP(模型上下文协议)标准化接口,解决大模型与外部工具和数据源集成的难题。Hologres 提供高性能数据分析能力,支持实时数据接入和湖仓一体分析;函数计算 FC 提供弹性、安全的 Serverless 运行环境;Qwen3 具备强大的多语言处理和推理能力。方案结合 ModelScope 的 MCP Playground,实现高效的服务化部署,帮助企业快速构建跨数据源、多步骤分解的数据分析 Agent,优化数据分析流程并降低成本。
本文详细介绍了阿里云应用服务器如何助力传统J2EE应用实现智能化升级。文章分为三部分:第一部分阐述了传统J2EE应用在智能化转型中的痛点,如协议鸿沟、资源冲突和观测失明;第二部分展示了阿里云应用服务器的解决方案,包括兼容传统EJB容器与微服务架构、支持大模型即插即用及全景可观测性;第三部分则通过具体步骤说明如何基于EDAS开启J2EE应用的智能化进程,确保十年代码无需重写,轻松实现智能化跃迁。
 
              Nydus+Dragonfly 组合减少容器启动过程中镜像的拉取时间,提升集群间的镜像分发效率。
 
              目前市面上大数据查询分析引擎层出不穷,但在业务使用过程中,大多含有性能瓶颈的SQL,主要集中在数据倾斜与数据膨胀问题中。本文结合业界对大数据SQL的使用与优化,尝试给出相对系统性的解决方案。
本文将介绍阿里云云原生大数据计算服务MaxCompute湖仓一体近实时增量处理技术架构的核心设计和应用场景。
MaxCompute通过脚本模式支持IF ELSE分支语句,让程序根据条件自动选择执行逻辑,支持更好的处理因数据不同而需要采用不同策略的业务场景产生的复杂SQL,提高开发者编程的灵活性!
本文将会分享Hologres RoaringBitmap 方案在画像分析的应用实践,实现更快更准的画像分析。