本文核心观点: • 基于大模型的 AI 原生应用将越来越多,容器和微服务为代表的云原生技术将加速渗透传统业务。 • API 是 AI 原生应用的一等公民,并引入了更多流量,催生企业新的生命力和想象空间。 • AI 原生应用对网关的需求超越了传统的路由和负载均衡功能,承载了更大的 AI 工程化使命。 • AI Infra 的一致性架构至关重要,API 网关、消息队列、可观测是 AI Infra 的重要组成。
本文介绍了通过MCP(Model Context Protocol)结合通义千问大模型实现跨平台、跨服务的自动化任务处理方案。使用Qwen3-235B-A22B模型,配合ComfyUI生成图像,并通过小红书等社交媒体发布内容,展示了如何打破AI云服务的数据孤岛。具体实践包括接入FileSystem、ComfyUI和第三方媒体Server,完成从本地文件读取到生成图像再到发布的全流程。 方案优势在于高可扩展性和易用性,但也存在大模型智能化不足、MCP Server开发难度较大及安全风险等问题。未来需进一步提升模型能力、丰富应用场景并解决安全挑战,推动MCP在更多领域落地。
 
              在本文中,我们将详细介绍两种在业务中实践的优化策略:多轮对话间的 KV cache 复用技术和投机采样方法。我们会细致探讨这些策略的应用场景、框架实现,并分享一些实现时的关键技巧。
本文介绍了如何使用PolarDB、通义千问和LangChain搭建GraphRAG系统,结合知识图谱和向量检索提升问答质量。通过实例展示了单独使用向量检索和图检索的局限性,并通过图+向量联合搜索增强了问答准确性。PolarDB支持AGE图引擎和pgvector插件,实现图数据和向量数据的统一存储与检索,提升了RAG系统的性能和效果。
软件系统有三个追求:高性能、高并发、高可用,俗称三高。本篇讨论高并发,从高并发是什么到高并发应对的策略、缓存、限流、降级等。
本文详细阐述了Prompt的设计要素,包括引导语、上下文信息等,还介绍了多种Prompt编写策略,如复杂规则拆分、关键信息冗余、使用分隔符等,旨在提高模型输出的质量和准确性。通过不断尝试、调整和优化,可逐步实现更优的Prompt设计。
检索增强生成(RAG)结合检索与生成技术,利用外部知识库提升大模型的回答准确性与丰富性。RAG的关键组件包括文本表示模型和排序模型,前者计算文本向量表示,后者进行精细排序。阿里巴巴通义实验室推出的GTE-Multilingual系列模型,具备高性能、长文档支持、多语言处理及弹性向量表示等特性,显著提升了RAG系统的检索与排序效果。该系列模型已在多个数据集上展示出优越性能,并支持多语言和长文本处理,适用于各种复杂应用场景。
在今年的SIGMOD会议上,阿里云瑶池数据库团队的论文《PolarDB-MP: A Multi-Primary Cloud-Native Database via Disaggregated Shared Memory》获得了Industry Track Best Paper Award,这是中国企业独立完成的成果首次摘得SIGMOD最高奖。PolarDB-MP是基于分布式共享内存的多主云原生数据库,本文将介绍这篇论文的具体细节。
 
              本文将深入探讨 AI 推理应用的可观测方案,并基于 Prometheus 规范提供一套完整的指标观测方案,帮助开发者构建稳定、高效的推理应用。
