文章探讨了为什么大规模集群中的可观测性服务会产生大量API请求、API服务器为何对DNS解析至关重要以及故障恢复过程为何缓慢的原因。
在 2.0 阶段,我们目标是实现面向任务的协同编码模式,人的主要职责转变为任务的下发、干预以及最后结果的审查。在这个过程中,人的实际工作量开始减轻,AI 工作的占比显著提升。目前的 2.0 版本是我们最近上线的。
本文是系列文章的第一篇,介绍第一个重要话题:“数据库的分布式事务”,这也是目前普通用户面对分布式数据库产品介绍问的最多的一个内容,如何有效评测分布式事务也是一个非常重要的能力。致敬同行,我们将PolarDB-X事务架构设计上的一些思考和测试方式,做了整理和梳理,期望能对大家更好的理解分布式事务的测试有所帮助。
本文将介绍阿里云云原生大数据计算服务MaxCompute湖仓一体近实时增量处理技术架构的核心设计和应用场景。
本文所涉及的实验体验的就是怎么建设AI的外脑?向量数据库的核心价值:AI外脑
Apache Paimon 和 Apache Hudi 作为数据湖存储格式,有着高吞吐的写入和低延迟的查询性能,是构建数据湖的常用组件。本文在阿里云EMR上,针对数据实时入湖场景,对 Paimon 和 Hudi 的性能进行比对,并分别以 Paimon 和 Hudi 作为统一存储搭建准实时数仓。