本文介绍了MCP(模型上下文协议)及其在AI领域的应用前景。MCP由Anthropic公司推出,通过标准化通信协议实现AI与数据源间的安全隔离,解决了传统AI应用中的数据隐私和安全问题。文章探讨了从LLM到MCP的进化过程,并分析了其面临的挑战,如算力不足和开放性需求。Serverless技术被提出作为解决这些问题的方案,提供弹性算力和支持安全沙箱环境。最后,文章提供了如何一键部署热门MCP Server的教程,帮助开发者快速上手并体验该协议的实际应用效果。
MCP Specification 在 2025-03-26 发布了最新的版本,本文对主要的改动进行详细介绍和解释
为了展现 LoongCollector 的卓越性能,本文通过纵向(LoongCollector 与 iLogtail 产品升级对比)和横向(LoongCollector 与其他开源日志采集 Agent 对比)两方面对比,深度测评不同采集 Agent 在常见的日志采集场景下的性能。
阿里云云效是国内领先的一站式DevOps平台,提供代码全生命周期管理、智能化交付流水线及精细化研发管控,支持多种开发场景。本文详细介绍了从其他平台(如Coding)向云效迁移的完整方案,包括代码仓库、流水线、制品仓库及项目数据的迁移步骤,帮助用户实现高效、安全的平滑迁移,提升研发效率与协作能力。
基于单个开源小模型的工具调用Agent,由于模型容量和预训练能力获取的限制,无法在推理和规划、工具调用、回复生成等任务上同时获得比肩大模型等性能。
Arm 架构的服务器通常具备低功耗的特性,能带来更优异的能效比。相比于传统的 x86 架构服务器,Arm 服务器在相同功耗下能够提供更高的性能。这对于大模型推理任务来说尤为重要,因为大模型通常需要大量的计算资源,而能效比高的 Arm 架构服务器可以提供更好的性能和效率。
本篇文章模拟一个企业级用户需求,手把手的描述企业级客户如何使用阿里云文件存储 NAS 实现云办公,实现多用户数据共享与隔离。
Spring Cloud Alibaba 发布了 Scheduling 任务调度模块 [#3732]提供了一套开源、轻量级、高可用的定时任务解决方案,帮助您快速开发微服务体系下的分布式定时任务。