官方博客-第6页-阿里云开发者社区

  • 2025-03-27
    1063

    大模型联网搜索的短板与突破之路

    本文作者详细分析了当前大模型在联网搜索功能中存在的几个主要问题,并提供了具体的案例和解决方案。

    1,063
  • 2025-05-22
    1249

    自媒体创作场景实践|通义千问3 + MCP=一切皆有可能

    本文介绍了通过MCP(Model Context Protocol)结合通义千问大模型实现跨平台、跨服务的自动化任务处理方案。使用Qwen3-235B-A22B模型,配合ComfyUI生成图像,并通过小红书等社交媒体发布内容,展示了如何打破AI云服务的数据孤岛。具体实践包括接入FileSystem、ComfyUI和第三方媒体Server,完成从本地文件读取到生成图像再到发布的全流程。 方案优势在于高可扩展性和易用性,但也存在大模型智能化不足、MCP Server开发难度较大及安全风险等问题。未来需进一步提升模型能力、丰富应用场景并解决安全挑战,推动MCP在更多领域落地。

    1,249
  • 130253

    一站式实时数仓Hologres整体能力介绍—2024实时数仓Hologres公开课 01

    一站式实时数仓Hologres整体能力介绍—2024实时数仓Hologres公开课 01

  • 2024-05-15
    15093

    Llama 3开源,魔搭社区手把手带你推理,部署,微调和评估

    Meta发布了 Meta Llama 3系列,是LLama系列开源大型语言模型的下一代。在接下来的几个月,Meta预计将推出新功能、更长的上下文窗口、额外的模型大小和增强的性能,并会分享 Llama 3 研究论文。

    15,093
  • 2024-06-24
    53123

    从云原生视角看 AI 原生应用架构的实践

    本文核心观点: • 基于大模型的 AI 原生应用将越来越多,容器和微服务为代表的云原生技术将加速渗透传统业务。 • API 是 AI 原生应用的一等公民,并引入了更多流量,催生企业新的生命力和想象空间。 • AI 原生应用对网关的需求超越了传统的路由和负载均衡功能,承载了更大的 AI 工程化使命。 • AI Infra 的一致性架构至关重要,API 网关、消息队列、可观测是 AI Infra 的重要组成。

    53,123
  • 2025-04-25
    1647

    MCP Server 实践之旅第 1 站:MCP 协议解析与云上适配

    本文深入解析了Model Context Protocol(MCP)协议,探讨其在AI领域的应用与技术挑战。MCP作为AI协作的“USB-C接口”,通过标准化数据交互解决大模型潜力释放的关键瓶颈。文章详细分析了MCP的生命周期、传输方式(STDIO与SSE),并提出针对SSE协议不足的优化方案——MCP Proxy,实现从STDIO到SSE的无缝转换。同时,函数计算平台被推荐为MCP Server的理想运行时,因其具备自动弹性扩缩容、高安全性和按需计费等优势。最后,展望了MCP技术演进方向及对AI基础设施普及的推动作用,强调函数计算助力MCP大规模落地,加速行业创新。

  • 2025-05-29
    1244

    MCP进阶:一键批量搞定MCP工具部署

    本文介绍了一种基于阿里云计算巢的一站式MCP工具解决方案,解决了传统MCP工具集成中的效率低下、调用方式割裂和动态管理困难等问题。方案通过标准化协议实现多MCP工具批量部署,提高云资源利用率,并支持OpenAPI与MCP双通道调用,使主流AI助手如Dify、Cherry Studio等无缝接入。内容涵盖背景、原理剖析、部署使用实战及问题排查,最后强调MCP协议作为“通用语言”连接数字与物理世界的重要性。

    1,244
  • Post-Training on PAI (4):模型微调SFT、DPO、GRPO

    阿里云人工智能平台 PAI 提供了完整的模型微调产品能力,支持 监督微调(SFT)、偏好对齐(DPO)、强化学习微调(GRPO) 等业界常用模型微调训练方式。根据客户需求及代码能力层级,分别提供了 PAI-Model Gallery 一键微调、PAI-DSW Notebook 编程微调、PAI-DLC 容器化任务微调的全套产品功能。

  • 2025-07-18
    861

    淘天AB实验分析平台Fluss落地实践:更适合实时OLAP的消息队列

    淘天集团数据开发团队基于Fluss构建新一代实时数仓,解决数据消费冗余、探查困难及大State运维难题。Fluss融合列存与实时更新能力,支持列裁剪、KV点查、Delta Join及湖流一体,显著降低IO与计算资源消耗,提升作业稳定性与数据探查效率。已在淘天AB实验平台落地,覆盖搜索、推荐等核心业务,通过618大促验证,实现千万级流量、秒级延迟,资源消耗降低30%,State缩减超100TB。未来将持续深化湖仓架构,拓展AI场景应用。

  • 1
    ...
    5
    6
    7
    ...
    80
    到第