本文探讨了MCP(Model-Calling Protocol)的兴起及其对AI生态的影响。自2月中旬起,MCP热度显著提升,GitHub Star和搜索指数均呈现加速增长趋势。MCP通过标准化协议连接大模型与外部工具,解决了碎片化集成问题,推动AI应用货币化及生态繁荣。文章分析了MCP与Function Calling的区别,指出MCP更适用于跨平台、标准化场景,而Function Calling在特定实时任务中仍具优势。此外,MCP促进了 supply端(如云厂商、大模型、中间件服务商)和消费端(终端用户)的变革,尤其以Devin和Manus为代表,分别改变了程序员和普通用户的交互方式。
本文介绍了MCP(模型上下文协议)及其在AI领域的应用前景。MCP由Anthropic公司推出,通过标准化通信协议实现AI与数据源间的安全隔离,解决了传统AI应用中的数据隐私和安全问题。文章探讨了从LLM到MCP的进化过程,并分析了其面临的挑战,如算力不足和开放性需求。Serverless技术被提出作为解决这些问题的方案,提供弹性算力和支持安全沙箱环境。最后,文章提供了如何一键部署热门MCP Server的教程,帮助开发者快速上手并体验该协议的实际应用效果。
本文探讨了如何高效、经济且可靠地将海外应用与基础设施日志统一采集至阿里云日志服务(SLS),解决全球化业务扩展中的关键挑战。重点介绍了高性能日志采集Agent(iLogtail/LoongCollector)在海外场景的应用,推荐使用LoongCollector以获得更优的稳定性和网络容错能力。同时分析了多种网络接入方案,包括公网直连、全球加速优化、阿里云内网及专线/CEN/VPN接入等,并提供了成本优化策略和多目标发送配置指导,帮助企业构建稳定、低成本、高可用的全球日志系统。
本文介绍了基于函数计算 FC 打造的全新 Function AI 工作流服务,该服务结合 AI 技术与流程自动化,实现从传统流程自动化到智能流程自动化的跨越。文章通过内容营销素材生成、内容安全审核和泛企业 VOC 挖掘三个具体场景,展示了 Function AI 工作流的设计、配置及调试过程,并对比了其与传统流程的优势。Function AI 工作流具备可视化、智能性和可扩展性,成为企业智能化转型的重要基础设施,助力企业提升效率、降低成本并增强敏捷响应能力。
通义灵码现已全面支持Qwen3,新增智能体模式,具备自主决策、环境感知、工具使用等能力,可端到端完成编码任务。支持问答、文件编辑、智能体多模式自由切换,结合MCP工具与记忆功能,提升开发效率。AI IDE重构编程流程,让开发更智能高效。
本文将介绍MaxCompute在半结构化数据方面的一些思考与创新,围绕半结构化数据简析、传统方案优劣对比、MaxCompute半结构化数据解决方案、收益分析。
本文介绍PolarDB-X数据库实现了基于标签的访问控制功能,可以在行、列级别对数据访问进行控制,精细化的限制用户对数据的访问和操作,保证了读写数据的安全。下文根据实际应用场景,介绍PolarDB-X的LBAC功能设计以及使用方法。
本文介绍了如何使用阿里云ROS资源编排服务快速部署和管理云资源。主要内容包括:1. 工具准备:安装ROSCDK,选择合适的代码编辑器和IDE,安装AI代码生成插件等。2. 环境准备:创建工程目录,进入虚拟环境,配置阿里云凭证信息,配置ROSCDK。3. 代码编写:根据文档描述,编写ROS代码来创建VPC、VSwitch、ECS等资源。4. 运行代码:执行ROS代码,创建ECS实例并部署FTP服务。总体来说,本文通过简单的步骤,让小白也能快速上手使用ROS资源编排服务,实现自动化部署和管理阿里云资源。
本文将展示如何基于阿里云PAI灵骏智算服务,在通义千问开源模型之上进行高效分布式继续预训练、指令微调、模型离线推理验证以及在线服务部署。