官方博客-第2页-阿里云开发者社区

  • 2025-04-24
    3675

    A2A(Agent2Agent) 简介

    本文主要介绍Google于2025年4月9日发布的Agent2Agent Protocol(简称“A2A”),这是一个旨在促进不同类型智能体(Agent)之间高效沟通与协作的开放协议。

  • 2025-06-26
    1917

    如何构建和调优高可用性的Agent?浅谈阿里云服务领域Agent构建的方法论

    本文深入探讨了Agent智能体的概念、技术挑战及实际落地方法,涵盖了从狭义到广义的Agent定义、构建过程中的四大挑战(效果不稳定、规划权衡、领域知识集成、响应速度),并提出了相应的解决方案。文章结合阿里云服务领域的实践经验,总结了Agent构建与调优的完整路径,为推动Agent在To B领域的应用提供了有价值的参考。

    1,917
  • 2024-10-17
    2911

    阿里云开源 AI 应用开发框架:Spring AI Alibaba

    阿里云开源 Spring AI Alibaba,旨在帮助 Java 开发者快速构建 AI 应用,共同构建物理新世界。

    2,911
  • 2025-05-29
    1992

    管理和调度Dify工作流

    Dify是一款开源的大模型应用开发平台,支持通过可视化界面快速构建AI Agent和工作流。然而,Dify本身缺乏定时调度与监控报警功能,且执行记录过多可能影响性能。为解决这些问题,可采用Dify Schedule或XXL-JOB集成Dify工作流。Dify Schedule基于GitHub Actions实现定时调度,但仅支持公网部署、调度延时较大且配置复杂。相比之下,XXL-JOB提供秒级调度、内网安全防护、限流控制及企业级报警等优势,更适合大规模、高精度的调度需求。两者对比显示,XXL-JOB在功能性和易用性上更具竞争力。

    1,992
  • 2025-01-14
    4024

    Spring AI 智能体通过 MCP 集成本地文件数据

    MCP 作为一款开放协议,直接规范了应用程序如何向 LLM 提供上下文。MCP 就像是面向 AI 应用程序的 USB-C 端口,正如 USB-C 提供了一种将设备连接到各种外围设备和配件的标准化方式一样,MCP 提供了一个将 AI 模型连接到不同数据源和工具的标准化方法。

    4,024
  • 2024-09-04
    2341

    【算法精讲系列】MGTE系列模型,RAG实施中的重要模型

    检索增强生成(RAG)结合检索与生成技术,利用外部知识库提升大模型的回答准确性与丰富性。RAG的关键组件包括文本表示模型和排序模型,前者计算文本向量表示,后者进行精细排序。阿里巴巴通义实验室推出的GTE-Multilingual系列模型,具备高性能、长文档支持、多语言处理及弹性向量表示等特性,显著提升了RAG系统的检索与排序效果。该系列模型已在多个数据集上展示出优越性能,并支持多语言和长文本处理,适用于各种复杂应用场景。

    2,341
  • 2025-04-24
    1906

    MCP 实践:基于 MCP 架构实现知识库答疑系统

    文章探讨了AI Agent的发展趋势,并通过一个实际案例展示了如何基于MCP(Model Context Protocol)开发一个支持私有知识库的问答系统。

  • 2025-08-05
    1000

    如何实现 AI Agent 自主发现和使用 MCP 服务 —— Nacos MCP Router 部署最佳实践

    Nacos社区推出MCP Router与MCP Registry开源解决方案,助力AI Agent高效调用外部工具。Router可智能筛选匹配的MCP Server,减少Token消耗,提升安全性与部署效率。结合Nacos Registry实现服务自动发现与管理,简化AI Agent集成复杂度。支持协议转换与容器化部署,保障服务隔离与数据安全。提供智能路由与代理模式,优化工具调用性能,助力MCP生态普及。

  • 2025-09-29
    417

    SLS Copilot 实践:基于 SLS 灵活构建 LLM 应用的数据基础设施

    本文将分享我们在构建 SLS SQL Copilot 过程中的工程实践,展示如何基于阿里云 SLS 打造一套完整的 LLM 应用数据基础设施。

  • 1
    2
    3
    4
    ...
    60
    到第