本文介绍了如何使用 llmaz 快速部署基于 vLLM 的大语言模型推理服务,并结合 Higress AI 网关实现流量控制、可观测性、故障转移等能力,构建稳定、高可用的大模型服务平台。
本文主要介绍如何使用CloudLens for SLS定位和解决iLogtail日常使用中的常见问题之一:iLogtail异常重启问题。
阿里云云消息队列 Kafka 版 Serverless 系列凭借其卓越的弹性能力,为道旅科技提供了灵活高效的数据流处理解决方案。无论是应对突发流量还是规划长期资源需求,该方案均能帮助企业实现资源动态调整和成本优化,同时保障业务的高可用性和连续性。
政采云基础架构团队技术专家朱海峰介绍了业务网关项目的背景和解决方案。
本方案利用函数计算 FC 部署 Web 应用,调用百炼模型服务实现 PPT 到视频的自动转换。视觉模型智能理解 PPT 图文内容,快速生成相匹配的解说词;文本模型对解说词进行优化,提高其可读性和吸引力;语音模型则根据解说词生成生动流畅的旁白音频。整个过程高度集成,只需一键操作,系统即可自动整合图片、文本和音频素材,快速生成对应讲解视频。
vLLM 是一种便捷的大型语言模型(LLM)推理服务,旨在简化个人和企业用户对复杂模型的使用。通过 vLLM,用户可以轻松发起推理请求,享受高效、稳定的 LLM 服务。针对大规模部署 vLLM 的挑战,如大模型参数量、高效推理能力和上下文理解等,阿里云函数计算(FC)提供了 GPU 预留实例闲置计费功能,优化了性能、成本和稳定性之间的平衡。此外,FC 支持简便的部署流程和多种应用集成方式,帮助企业快速上线并管理 vLLM 服务。总结来说,vLLM 结合 FC 的解决方案为企业提供了强大的技术支持和灵活的部署选项,满足不同业务需求。
本文围绕某线上客户部署DeepSeek-R1满血版模型时进行多次压测后,发现显存占用一直上升,从未下降的现象,记录了排查过程。
本文探讨了如何高效、经济且可靠地将海外应用与基础设施日志统一采集至阿里云日志服务(SLS),解决全球化业务扩展中的关键挑战。重点介绍了高性能日志采集Agent(iLogtail/LoongCollector)在海外场景的应用,推荐使用LoongCollector以获得更优的稳定性和网络容错能力。同时分析了多种网络接入方案,包括公网直连、全球加速优化、阿里云内网及专线/CEN/VPN接入等,并提供了成本优化策略和多目标发送配置指导,帮助企业构建稳定、低成本、高可用的全球日志系统。