本文介绍阿里云智能媒体服务IMS,围绕视频剪辑及数字人训练中的抠图需求,如何运用 绿幕抠图、实景抠图能力,实现高效、便捷的视频制作及合成体验。
AI技术迎来了“百花齐放”的春天,这既是我们的挑战也是机会。而AI+千行百业创造了无限可能,也为独立开发者提供了大量的资源、支持以及学习经验的机会。本文分享一篇摘录自Hexmos 期刊的AI 时代的 GPU 生存工具包。
利用阿里云计算巢Appflow,通过控制台配置即可顺利将您自己开发或微调的大模型接入钉钉或其他通信软件群聊,帮您解决以下各类场景的模型调用需求: 1. 在钉钉群接入自己微调的领域大模型做问答或智能答疑; 2. 微调后的大模型在钉钉群或其他群聊中共同测试效果 3. …
本文来学习一个典型的物联网技术架构,以及在这个技术架构里面,消息队列所发挥的作用。在物联网的场景里面,对消息技术的要求和面向服务端应用的消息技术有什么区别?学习 RocketMQ 5.0 的子产品 MQTT,是如何解决这些物联网技术难题的。
多模态理解模型具有广泛的应用,比如多标签分类、视频问答(videoQA)和文本视频检索等。现有的方法已经在视频和语言理解方面取得了重大进展,然而,他们仍然面临两个巨大的挑战:无法充分的利用现有的特征;训练时巨大的GPU内存消耗。我们提出了MuLTI,这是一种高度准确高效的视频和语言理解模型,可以实现高效有效的特征融合和对下游任务的快速适应。本文详细介绍基于MuLTI实现高效视频与语言理解。
在今天这样以AIGC为代表的AI时代下,了解训练场景对于存储的具体诉求同样是至关重要的。本文将尝试解读WEKA的一个相关报告,来看看AIGC对于存储有哪些具体的性能要求。
本文介绍了如何通过阿里云 MSE 微服务引擎和云效应用交付平台 AppStack 实现灰度发布。