官方博客-第15页-阿里云开发者社区

  • 2024-09-27
    828

    跟着iLogtail学习容器运行时与K8s下日志采集方案

    iLogtail 作为开源可观测数据采集器,对 Kubernetes 环境下日志采集有着非常好的支持,本文跟随 iLogtail 的脚步,了解容器运行时与 K8s 下日志数据采集原理。

    828
  • 743

    云+AI时代下,Alibaba Cloud Linux 进一步演进思考

    用好开源、做深开源、自研创新,打造全方位安全可信的服务器操作系统。

  • 2024-11-07
    1662

    白话文讲解大模型| Attention is all you need

    本文档旨在详细阐述当前主流的大模型技术架构如Transformer架构。我们将从技术概述、架构介绍到具体模型实现等多个角度进行讲解。通过本文档,我们期望为读者提供一个全面的理解,帮助大家掌握大模型的工作原理,增强与客户沟通的技术基础。本文档适合对大模型感兴趣的人员阅读。

    1,662
  • 2025-01-14
    1189

    网络分析与监控:阿里云拨测方案解密

    阿里云网络拨测业务提供了全球、多种协议、多种网络态势的用户网络性能和用户体验监控场景的全面可观测方案。该文章从拨测场景下,介绍了用户如何快速的构建一套全球用户视角的服务可用性大盘,为客户的业务保驾护航。

    1,189
  • 2025-02-14
    1425

    DeepSeek-V3 高效训练关键技术分析

    本文从模型架构、并行策略、通信优化和显存优化四个方面展开,深入分析了DeepSeek-V3高效训练的关键技术,探讨其如何以仅5%的算力实现对标GPT-4o的性能。

    1,425
  • 2025-04-03
    811

    大模型上下文协议 MCP 带来了哪些货币化机会

    本文探讨了MCP(Model-Calling Protocol)的兴起及其对AI生态的影响。自2月中旬起,MCP热度显著提升,GitHub Star和搜索指数均呈现加速增长趋势。MCP通过标准化协议连接大模型与外部工具,解决了碎片化集成问题,推动AI应用货币化及生态繁荣。文章分析了MCP与Function Calling的区别,指出MCP更适用于跨平台、标准化场景,而Function Calling在特定实时任务中仍具优势。此外,MCP促进了 supply端(如云厂商、大模型、中间件服务商)和消费端(终端用户)的变革,尤其以Devin和Manus为代表,分别改变了程序员和普通用户的交互方式。

    811
  • 2025-05-06
    1299

    MCP 规范新版本特性全景解析与落地实践

    MCP Specification 在 2025-03-26 发布了最新的版本,本文对主要的改动进行详细介绍和解释

  • 2024-07-22
    15869

    Spring Cloud Alibaba 集成分布式定时任务调度功能

    Spring Cloud Alibaba 发布了 Scheduling 任务调度模块 [#3732]提供了一套开源、轻量级、高可用的定时任务解决方案,帮助您快速开发微服务体系下的分布式定时任务。

    15,869
  • 2024-09-05
    398

    软件测试之道 -- 做一个有匠心的程序员

    作者一年前围绕设计模式与代码重构写了一篇《代码整洁之道 -- 告别码农,做一个有思想的程序员!》的文章。本文作为续篇,从测试角度谈程序员对软件质量的追求。

    398
  • 1
    ...
    14
    15
    16
    ...
    63
    到第