当系统出现大量或者重大的错误却不被人感知,将会对业务产生影响,从而导致资产损失。当竞争对手实施了新战术,却无法及时感知,跟不上竞争对手的节奏,总是追着对方尾巴走。当要做决策的时候,海量的业务数据增长却无法实时看到聚合结果,决策总是凭借过往经验或者过时的数据分析之上。
本文将介绍阿里云云原生大数据计算服务MaxCompute湖仓一体近实时增量处理技术架构的核心设计和应用场景。
中间件产品门槛高?短时间无法深入了解?免费试用+30秒一键体验,低代码,无部署环境,带你了解“历经万亿级数据洪峰考验”的云消息队列RocketMQ。
本文主要教大家怎么用好数据库, 而不是怎么运维管理数据库、怎么开发数据库内核.
本文主要介绍Ganos实时热力聚合查询并动态输出热力瓦片能力,依托阿里云PolarDB PostgreSQL产品、ADB PostgreSQL和RDS PostgreSQL 三款数据库建设输出。
Apache Paimon 和 Apache Hudi 作为数据湖存储格式,有着高吞吐的写入和低延迟的查询性能,是构建数据湖的常用组件。本文在阿里云EMR上,针对数据实时入湖场景,对 Paimon 和 Hudi 的性能进行比对,并分别以 Paimon 和 Hudi 作为统一存储搭建准实时数仓。
Koordinator v1.4 正式发布!为用户带来更多的计算负载类型和更灵活的资源管理机制
MaxCompute(ODPS)SQL 发展到今天已经颇为成熟,作为一种 SQL 方言,可以高效地应用在各种数据处理场景。本文尝试独辟蹊径,强调通过灵活的、发散性的数据处理思维,就可以用最基础的语法,解决复杂的数据场景。