接下来,人与智能体的交互将变得更为紧密,比如 N 年以后是否可以逐渐过渡。这个逐渐过渡的过程实际上是温和的,从依赖人类到依赖超大规模算力的转变,可能会取代我们的一些职责。这不仅仅是简单的叠加关系。对于AI和超大规模算力,这是否意味着我们可以大幅度提升软件质量,是否可以缩短研发周期并提高效率,还有创造出更优质的软件并持续发展,这无疑是肯定的。
DeepSeek加速了模型平权,大模型推理需求激增,性能提升主战场从训练转向推理。SSE(Server-Sent Events)和WebSocket成为大模型应用的标配网络通信协议。SSE适合服务器单向推送实时数据,如一问一答场景;WebSocket支持双向实时通信,适用于在线游戏、多人协作等高实时性场景。两者相比传统HTTPS协议,能更好地支持流式输出、长时任务处理和多轮交互,满足大模型应用的需求。随着用户体量扩大,网关层面临软件变更、带宽成本及恶意攻击等挑战,需通过无损上下线、客户端重连机制、压缩算法及安全防护措施应对。
一个典型的推理场景面临的问题可以概括为限流、负载均衡、异步化、数据管理、索引增强 5 个场景。通过云数据库 Tair 丰富的数据结构可以支撑这些场景,解决相关问题,本文我们会针对每个场景逐一说明。
本文将介绍PolarDB-X对于向量化SIMD指令的探索和实践,包括基本用法及实现原理,以及在具体算子实现中的思考和沉淀。
本文主要介绍了解析云原生 AI 所遇到的技术挑战和应对方案,随后介绍云原生 AI 领域的关键技术与架构细节,最后分享我们在 ACK 的相关经验及工程实践。
从整体技术架构上学习 RocketMQ 5.0 的云原生架构、一体化架构,最后再分别从业务场景切入,详细介绍 RocketMQ 5.0 在不同的业务场景提供的能力和关键技术原理,包括业务消息、流处理、物联网以及面向云时代的事件驱动场景。
本文介绍 Higress 将 Wasm 插件的运行时从 V8 切换到 WebAssembly Micro Runtime (WAMR) 的最新进展。
相对于传统软件研发,微服务架构下典型的需求交付最大的区别在于有了能够小范围真实验证的机制,且交付单位较小,风险可控,灰度发布可以弥补线下测试的不足。本文从 DevOps 视角概述灰度发布实践,介绍如何将灰度发布与 DevOps 工作融合,快来了解吧~