本文介绍了如何使用通义万相AIGC技术和阿里云的计算和存储产品来搭建自己的AI绘画服务。首先,通过创建基础云产品资源和部署AI绘画服务的步骤来开始搭建服务。然后,介绍了模板的原理和内容,以及ROS编排引擎的作用。接下来,详细介绍了AI绘画服务的一键部署过程,包括定义参数、模板的编写和ROS的使用。最后,提到了应用运行环境的搭建和自定义应用页面的方法。通过ROS的自动化部署,用户可以方便快捷地拥有自己的AI绘画服务。
RocketMQ 早期批处理模型存在一定的约束条件,为进一步提升性能,RocketMQ 进行了索引构建流水线改造,同时 BatchCQ 模型和 AutoBatch 模型也优化了批处理流程,提供了更简便的使用体验,快点击本文查看详情及配置展示~
在复杂中后台设计中,为解决配置变更影响多场景问题,提出结合正向和逆向信息架构,采用原子化任务,动态组合任务,降低用户和开发成本,优化体验并改变已有的产品迭代和人机交互模式。未来可能发展为AI自动根据业务规则和用户行为生成最佳方案。
阿里云函数计算与 NVIDIA TensorRT/TensorRT-LLM 展开合作,通过结合阿里云的无缝计算体验和 NVIDIA 的高性能推理库,开发者能够以更低的成本、更高的效率完成复杂的 AI 任务,加速技术落地和应用创新。
得益于阿里云函数计算的产品能力,魔搭 SwingDeploy 后的模型推理 API 服务默认具备极致弹性伸缩(缩零能力)、GPU 虚拟化(最小 1GB 显存粒度)、异步调用能力、按用付费、闲置计费等能力,这些能力帮助算法工程师大大加快了魔搭开源模型投入生产的生命周期。
随着云计算和人工智能(AI)技术的飞速发展,企业对于高效、灵活且成本效益高的解决方案的需求日益增长。本文旨在探讨 Serverless 架构与 AI 技术的结合,如何通过 Serverless 函数计算和 AI 开发平台,助力企业简化应用开发流程,减少企业 AI 业务试错成本,加速业务创新,为企业业务发展提供无限可能。
本文作者基于自身在RAG技术领域长达半年的实践经验,分享了从初识RAG的潜力到面对实际应用挑战的心路历程,以及如何通过一系列优化措施逐步解决这些挑战的过程。
Anolis OS 作为国内首个正式提供 OpenVINO 开发包和镜像的服务器端操作系统,推动国内 AI 推理生态和能力的升级。