如何充分发挥 SQL 能力,是本篇文章的主题。本文尝试独辟蹊径,强调通过灵活的、发散性的数据处理思维,就可以用最基础的语法,解决复杂的数据场景。
本文将演示 Higress 如何无缝对接 OKG 游戏服,并为其带来的优秀特性。
本文介绍了如何通过阿里云 MSE 微服务引擎和云效应用交付平台 AppStack 实现灰度发布。
vLLM是UC Berkeley开源的大语言模型高速推理框架,其内存管理核心——PagedAttention、内置的加速算法如Continues Batching等,一方面可以提升Yuan2.0模型推理部署时的内存使用效率,另一方面可以大幅提升在实时应用场景下Yuan2.0的吞吐量。
这篇文章介绍了使用开源工具NextChat和Higress搭建的一个模拟ChatGPT和通义千问对话PK的测试场景。
英文技术内容翻译难于理解,如何跨语言学习?通义千问结合 Higress 的多模型协议转换能力,可以通过配置插件获得推理模型基于内容理解后的精准翻译,点击本文手把手教你如何配置。
在特定场景下编写模板的流程比较固定,本篇文章以《部署单点 WordPress 博客平台》为例,讲述如何完成一个部署成功率高、适配场景广的模板。大多数在 ECS 上部署应用的模板都可以参考此教程来编写。
ZooKeeper 作为应用的核心中间件在业务流程中存储着敏感数据,具有关键作用。正确且规范的使用方法对确保数据安全至关重要,否则可能会因操作不当而导致内部数据泄露,进而带来严重的安全风险。因此,在日常的 ZooKeeper 运维和使用过程中,标准化和安全的操作对于加强企业安全防护和能力建设显得格外关键。为了实现这一目标,MSE 提供了一整套标准化流程,帮助用户以更安全、更简便的方式使用 ZooKeeper,从而加速企业安全能力的提升同时最大程度地降低在变更过程中可能出现的风险。