本文介绍了如何结合阿里云百炼和魔笔平台,快速构建一个智能化的专属知识空间。通过利用DeepSeek R1等先进推理模型,实现高效的知识管理和智能问答系统。 5. **未来扩展**:探讨多租户隔离、终端用户接入等高级功能,以适应更大规模的应用场景。 通过这些步骤,用户可以轻松创建一个功能全面、性能卓越的知识管理系统,极大提升工作效率和创新能力。
SPL 算子不仅完成了旧版 DSL 加工向更强大语法和算子形式的过渡,更将性能调优和场景适配做到了极致,解锁了时序预测和日志分析的更多可能性。作为重要的基础设施模块,SPL 加工能力将持续优化演进。未来的规划将继续聚焦通用性、性能与产品能力,为用户提供更加强大、灵活的技术支持。
MCP 的价值是统一了 Agent 和 LLM 之间的标准化接口,有了 MCP Server 的托管以及开发态能力只是第一步,接下来重要的是做好 MCP 和 Agent 的集成,FunctionAI 即将上线 Agent 开发能力,敬请期待。
目前市面上大数据查询分析引擎层出不穷,但在业务使用过程中,大多含有性能瓶颈的SQL,主要集中在数据倾斜与数据膨胀问题中。本文结合业界对大数据SQL的使用与优化,尝试给出相对系统性的解决方案。
本文提供在阿里云云服务器ECS上基于CentOS 7.9 64位操作系统搭建高可用的小程序服务端的指引。同时指导您在本地开发一个简单的微信/支付宝小程序——ECS小助手,通过远程调用部署在ECS上的服务端,实现在小程序中输入框输入ECS实例ID查询实例详细信息的功能。
本文主要教大家怎么用好数据库, 而不是怎么运维管理数据库、怎么开发数据库内核.
实时数据大屏是实时计算的重要应用场景之一,广泛应用在电商业务中,用于实时监控和分析电商平台的运营情况。通过大屏展示实时的销售额、订单量、用户活跃度、商品热度等数据指标,帮助业务人员随时了解业务的实时状态,快速发现问题和机会。同时,通过数据可视化和趋势分析,大屏也提供了决策支持和优化运营的功能,帮助业务人员做出及时的决策和调整策略,优化电商业务的运营效果。 下面以电商业务为背景,介绍如何构建经典实时数仓,实现实时数据从业务库到ODS层、DWD层、DWS层全链路流转,基于Dataphin和Quick BI实现实时数据大屏。
分页查询是数据库中常见的操作。本文将介绍,如何在数据库中(无论是单机还是分布式)高效的进行翻页操作。
本文介绍大模型可观测&安全推理审计解决方案和Demo演示,SLS 提供全面的 LLM 监控和日志记录功能。监控大模型使用情况和性能,自定义仪表盘;SLS 汇总 Actiontrail 事件、云产品可观测日志、LLM 网关明细日志、详细对话明细日志、Prompt Trace 和推理实时调用明细等数据,建设完整统一的大模型可观测方案,为用户的大模型安全推理审计提供全面合规支持。