官方博客-第9页-阿里云开发者社区

  • 2024-07-01
    33185

    详解微服务应用灰度发布最佳实践

    相对于传统软件研发,微服务架构下典型的需求交付最大的区别在于有了能够小范围真实验证的机制,且交付单位较小,风险可控,灰度发布可以弥补线下测试的不足。本文从 DevOps 视角概述灰度发布实践,介绍如何将灰度发布与 DevOps 工作融合,快来了解吧~

  • 2025-02-07
    869

    浏览量超 10w 的热图,描述 RAG 的主流架构

    大模型性能的持续提升,进一步挖掘了 RAG 的潜力,RAG 将检索系统与生成模型相结合,带来诸多优势,如实时更新知识、降低成本等。点击本文,为您梳理 RAG 的基本信息,并介绍提升大模型生成结果的方法,快一起看看吧~

    869
  • 2024-06-14
    39965

    AI时代:云存储加速多模态数据存储与管理创新

    阿里云存储产品高级解决方案架构师欧阳雁(乐忱)分享了中国企业在全闪存高端存储市场的快速增长,指出AI大模型的发展推动了企业级存储市场。去年,高端企业级存储闪存占比约为25%,相较于欧美50%的比例,显示出中国在AI领域的巨大增长潜力。演讲涵盖AI业务流程,包括数据预处理、训练和推理的痛点,以及针对这些环节的存储解决方案,强调了稳定、高性能和生命周期管理的重要性。此外,还介绍了数据预处理的全球加速和弹性临时盘技术,训练阶段的高性能存储架构,推理场景的加速器和AI Agent的应用,以及应对大数据业务的存储考量,如对象存储、闪电立方和冷归档存储产品。

    39,965
  • 2025-08-05
    1107

    如何实现 AI Agent 自主发现和使用 MCP 服务 —— Nacos MCP Router 部署最佳实践

    Nacos社区推出MCP Router与MCP Registry开源解决方案,助力AI Agent高效调用外部工具。Router可智能筛选匹配的MCP Server,减少Token消耗,提升安全性与部署效率。结合Nacos Registry实现服务自动发现与管理,简化AI Agent集成复杂度。支持协议转换与容器化部署,保障服务隔离与数据安全。提供智能路由与代理模式,优化工具调用性能,助力MCP生态普及。

  • 2024-05-15
    102501

    大语言模型推理提速,TensorRT-LLM 高性能推理实践

    大型语言模型(Large language models,LLM)是基于大量数据进行预训练的超大型深度学习模型,本文主要讲述TensorRT-LLM利用量化、In-Flight Batching、Attention、Graph Rewriting提升 LLM 模型推理效率。

    102,501
  • 2024-05-15
    1453

    Multi-Agent实践第6期:面向智能体编程:狼人杀在AgentScope

    本期文章,我们会介绍一下AgentScope的一个设计哲学(Agent-oriented programming)

    1,453
  • 2024-09-03
    1625

    速成RAG+Agent框架大模型应用搭建

    本文侧重于能力总结和实操搭建部分,从大模型应用的多个原子能力实现出发,到最终串联搭建一个RAG+Agent架构的大模型应用。

    1,625
  • 2024-10-29
    1507

    AI 辅助编程的效果衡量

    本文主要介绍了如何度量研发效能,以及 AI 辅助编程是如何影响效能的,进而阐述如何衡量 AI 辅助编程带来的收益。

    1,507
  • Post-Training on PAI (4):模型微调SFT、DPO、GRPO

    阿里云人工智能平台 PAI 提供了完整的模型微调产品能力,支持 监督微调(SFT)、偏好对齐(DPO)、强化学习微调(GRPO) 等业界常用模型微调训练方式。根据客户需求及代码能力层级,分别提供了 PAI-Model Gallery 一键微调、PAI-DSW Notebook 编程微调、PAI-DLC 容器化任务微调的全套产品功能。

  • 1
    ...
    8
    9
    10
    ...
    65
    到第