大模型不知不觉已经火了快一年了,拥有一个能够随时对话使用的大模型已经成为不少人的刚需。然而,最大的问题可能是如何访问和调用对话模型。如果,我是说如果,能在您的即时通讯软件钉钉中直接与通义千问对话,是不是会让这一切更方便快捷?! 按照传统方案,我们要实现上述场景可能需要非常繁琐的接入步骤,甚至还需要自行开发很多代码,这样的准入门槛实在,太!高!啦! 而今天,我要向各位隆重介绍一个新的解决方案——阿里云计算巢AppFlow应用与数据集成平台,无需任何代码开发,简单快捷,自动连接企业内部应用与外部应用或数据,搭建企业的自动化服务流程,帮助个人、企业降低了集成实施的周期和成本。
本教程将带领大家免费领取阿里云PAI-EAS的免费试用资源,并且带领大家在 ComfyUI 环境下使用 SVD的模型,根据任何图片生成一个小短视频。
本次文根据峰会演讲内容整理:分享在大模型时代基于湖仓一体的数据产品演进,以及我们观察到的一些智能开发相关的新范式。
大语言模型的革命性突破使智能编程成为了可能,通义灵码正是基于通义大模型打造的 AI 编程助手,通过 IDE 插件的形式提供代码补全、单元测试生成等功能,能达到毫秒级的响应速度。目前,通义灵码已在阿里云内部及多家企业中应用,阿里云也在探索多智能体产品,即 AI 程序员,助力数字世界的蓬勃发展,颠覆 IT 生产力。
笔者结合实践经验以近期在负责的复杂表格智能问答为切入点,结合大模型的哲学三问(“是谁、从哪里来、到哪里去”),穿插阐述自己对大模型的一些理解与判断,以及面向公共云LLM的建设模式思考,并分享软件设计+模型算法结合的一些研发实践经验。
阅读这个文章可能的收获:理解AI、看懂模型和代码、能够自己搭建模型用于实际任务。
随着企业对云服务的广泛应用,数据安全成为重要课题。通过对云上数据进行敏感数据扫描和保护,可以有效提升企业或组织的数据安全。本文主要基于阿里云的数据安全中心数据识别功能进行深入实践探索。通过对商品购买日志的模拟,分析了如何使用阿里云的工具对日志数据进行识别、脱敏(3 种模式)处理和基于 StoreView 的查询脱敏方式,从而在保障数据安全的同时满足业务需求。通过这些实践,企业可以有效降低数据泄漏风险,提升数据治理能力和系统安全性。
探讨了 SLS 中增强数据安全的几种方式:权限精细化管控有效减少了潜在安全风险;接入层脱敏技术阻止敏感数据落库,提升了隐私保护;StoreView 字段集控制通过限制查询数据范围,降低数据泄露损害。智能监控系统提供实时监测,快速识别并阻断异常拖库行为,为企业提供了迅速响应和抵御威胁的能力。
通义灵码新上的外挂 Project Rules 获得了开发者的一致好评:最小成本适配我的开发风格、相当把团队经验沉淀下来,是个很好功能……