在 2.0 阶段,我们目标是实现面向任务的协同编码模式,人的主要职责转变为任务的下发、干预以及最后结果的审查。在这个过程中,人的实际工作量开始减轻,AI 工作的占比显著提升。目前的 2.0 版本是我们最近上线的。
 
              当代AI来势汹汹,本文从AI的特点、对研发的挑战、AI的应用工程和场景分化等剖析了AI时代的应用工程化架构演进之路。
本文来学习一个典型的物联网技术架构,以及在这个技术架构里面,消息队列所发挥的作用。在物联网的场景里面,对消息技术的要求和面向服务端应用的消息技术有什么区别?学习 RocketMQ 5.0 的子产品 MQTT,是如何解决这些物联网技术难题的。
本文介绍了 SLS 基本能力,并和开源自建 ELK 做了对比,可以看到 SLS 相比开源 ELK 有较大优势。
端到端链路追踪是覆盖全部关联 IT 系统,能够完整记录用户行为在系统间调用路径与状态的最佳实践方案。而真正实现端到端链路追踪,需要解决三个难题:链路插桩、链路采集与加工、链路上下文透传。阿里云 ARMS 目前已支持全链路端到端追踪,快来查看转发吧~
阿里云云原生数据仓库AnalyticDB MySQL(ADB-M)与被OpenAI收购的实时分析数据库Rockset对比,两者在架构设计上有诸多相似点,例如存算分离、实时写入等,但ADB-M在多个方面展现出了更为成熟和先进的特性。ADB-M支持更丰富的弹性能力、强一致实时数据读写、全面的索引类型、高吞吐写入、完备的DML和Online DDL操作、智能的数据生命周期管理。在向量检索与分析上,ADB-M提供更高检索精度。ADB-M设计原理包括分布式表、基于Raft协议的同步层、支持DML和DDL的引擎层、高性能低成本的持久化层,这些共同确保了ADB-M在AI时代作为实时数据仓库的高性能与高性价比
《Higress AI 网关挑战赛》正在火热进行中,Higress 社区邀请了目前位于排行榜 top5 的选手杨贝宁同学分享他的心得。本文是他整理的参赛攻略。