以Jenkins+Gitlab基于k8s集群实现自建DevOps系统的方式部署开源微服务PiggyMetrics,与云效DevOps对比,介绍真正的免运维,实现高效的业务开发流程。
广义上的链路成本,既包含使用链路追踪产生的数据生成、采集、计算、存储、查询等额外资源开销,也包含链路系统接入、变更、维护、协作等人力运维成本。为了便于理解,本小节将聚焦在狭义上的链路追踪机器资源成本,人力成本将在下一小节(效率)进行介绍。
“从一次常见的发布说起,在云上某个系统应用发布时,重启阶段会导致较大数量的 OpenAPI、上游业务的请求响应时间明显增加甚至超时失败。随着业务的发展,用户数和调用数越来越多,该系统又一直保持一周发布二次的高效迭代频率,发布期间对业务的影响越来越无法接受,微服务下线的治理也就越来越紧迫。”
MSE 云原生网关默认提供了丰富的 Metrics 指标大盘,配合阿里云 Prometheus 监控提供开箱即用的完整可观测性能力,能够帮助用户快捷、高效的搭建自身的微服务网关与对应的可观测体系。
微服务架构下,有一些需求开发涉及到微服务调用链路上的多个微服务同时改动。通常每个微服务都会有灰度环境或分组来接受灰度流量。我们希望进入上游灰度环境的流量也能进入下游灰度的环境中,确保1个请求始终在灰度环境中传递。即使这个调用链路上有一些微服务应用不存在灰度环境,那么这些微服务应用在请求下游应用的时候依然能够回到下游应用的灰度环境中。我们通过 MSE 提供的全链路灰度能力,可以在不需要修改任何业务代码的情况下,轻松实现上述所说的全链路灰度能力。
“可观测”是近几年比较火的一个议题,而 OPLG 就是包含了 OpenTelemetry、Prometheus、Loki 和 Grafana 在内的开源可观测技术合集,它们之间将碰撞出什么样的火花?请阅读本文介绍的基于 OPLG 从 0 到 1 构建统一可观测平台实践。