分页查询是数据库中常见的操作。本文将介绍,如何在数据库中(无论是单机还是分布式)高效的进行翻页操作。
通过阿里云的KMS产品针对文件或者证书文件进行签名验签,可以有效解决攻击者针对敏感文件、重要文件在传输过程中被篡改,其次可以实现证书双向认证过程中的证书合法性校验,真正做到传输链路安全。
代价估计是优化其中非常重要的一个步骤,研究代价估计的原理和MySQL的具体实现对做SQL优化是非常有帮助。本文有案例有代码,由浅入深的介绍了代价估计的原理和MySQL的具体实现。
本文主要介绍业务消息的应用解耦场景,具体解耦什么? RocketMQ 在业务消息场景的基础特性。业界那么多消息队列能实现应用解耦,RocketMQ 在基础特性上有哪些增强?
本文将从使用的角度出发,来更详细的展示一下流存储的场景,看看它和业务消息的场景有哪些区别。 RocketMQ 5.0 面向流存储的场景,提供了哪些特性。再结合两个数据集成的案例,来帮助大家了解流存储的用法。
RocketMQ 5.0 是为应对物联网(IoT)场景而发布的云原生消息中间件,旨在解决 IoT 中大规模设备连接、数据处理和边缘计算的需求。
微服务架构下,有一些需求开发涉及到微服务调用链路上的多个微服务同时改动。通常每个微服务都会有灰度环境或分组来接受灰度流量。我们希望进入上游灰度环境的流量也能进入下游灰度的环境中,确保1个请求始终在灰度环境中传递。即使这个调用链路上有一些微服务应用不存在灰度环境,那么这些微服务应用在请求下游应用的时候依然能够回到下游应用的灰度环境中。我们通过 MSE 提供的全链路灰度能力,可以在不需要修改任何业务代码的情况下,轻松实现上述所说的全链路灰度能力。
阿里云云原生数据仓库AnalyticDB MySQL(ADB-M)与被OpenAI收购的实时分析数据库Rockset对比,两者在架构设计上有诸多相似点,例如存算分离、实时写入等,但ADB-M在多个方面展现出了更为成熟和先进的特性。ADB-M支持更丰富的弹性能力、强一致实时数据读写、全面的索引类型、高吞吐写入、完备的DML和Online DDL操作、智能的数据生命周期管理。在向量检索与分析上,ADB-M提供更高检索精度。ADB-M设计原理包括分布式表、基于Raft协议的同步层、支持DML和DDL的引擎层、高性能低成本的持久化层,这些共同确保了ADB-M在AI时代作为实时数据仓库的高性能与高性价比