RocketMQ 5.0 是为应对物联网(IoT)场景而发布的云原生消息中间件,旨在解决 IoT 中大规模设备连接、数据处理和边缘计算的需求。
文章介绍了GPT-Sovits,一个开源的生成式语音模型,因其在声音克隆上的高质量和简易性而受到关注。阿里云函数计算(Function Compute)提供了一个快速托管GPT-Sovits的方法,让用户无需管理服务器即可体验和部署该模型。通过函数计算,用户可以便捷地搭建基于GPT-Sovits的文本到语音服务,并享受到按需付费和弹性扩展的云服务优势。此外,文章还列举了GPT-Sovits在教育、游戏、新能源等多个领域的应用场景,并提供了详细的步骤指导,帮助用户在阿里云上部署和体验GPT-Sovits模型。
当前,大多数面向 Golang 应用的监控能力主要是通过 SDK 方式接入,需要开放人员手动进行埋点,会存在一定问题。对此,可观测 Go Agent 应运而生。本文介绍的阿里云可观测 Go Agent 方案,能通过无侵入的方式实现应用监控能力。
本文介绍如何使用Serverless Devs CLI工具从零开发并一键部署MCP Server到阿里云函数计算(FC)。首先通过初始化MCP Server项目,完成本地代码编写,利用Node.js实现一个简单的Hello World工具。接着对代码进行打包,并通过Serverless Devs工具将项目部署至云端。部署完成后,提供三种客户端接入方式:官方Client、其他本地Client及在FC上部署的Client。最后可通过内置大模型的inspector测试部署效果。Serverless Devs简化了开发流程,提升了MCP Server的构建效率。
本文介绍了阿里云Prometheus 2.0方案,针对大规模AI系统的可观测性挑战进行全面升级。内容涵盖数据采集、存储、计算、查询及生态整合等维度。 Prometheus 2.0引入自研LoongCollector实现多模态数据采集,采用全新时序存储引擎提升性能,并支持RecordingRule与ScheduleSQL预聚合计算。查询阶段提供跨区域、跨账号的统一查询能力,结合PromQL与SPL语言增强分析功能。此外,该方案已成功应用于阿里云内部AI系统,如百炼、通义千问等大模型全链路监控。未来,阿里云将发布云监控2.0产品,进一步完善智能观测技术栈。
本文主要介绍了解析云原生 AI 所遇到的技术挑战和应对方案,随后介绍云原生 AI 领域的关键技术与架构细节,最后分享我们在 ACK 的相关经验及工程实践。
本文介绍了Ganos H3的相关功能,帮助读者快速了解Ganos地理网格的重要特性与应用实践。H3是Uber研发的一种覆盖全球表面的二维地理网格,采用了一种全球统一的、多层次的六边形网格体系来表示地球表面,这种地理网格技术在诸多业务场景中得到广泛应用。Ganos不仅提供了H3网格的全套功能,还支持与其它Ganos时空数据类型进行跨模联合分析,极大程度提升了客户对于时空数据的挖掘分析能力。
作者一年前围绕设计模式与代码重构写了一篇《代码整洁之道 -- 告别码农,做一个有思想的程序员!》的文章。本文作为续篇,从测试角度谈程序员对软件质量的追求。