本文介绍了ECS和OSS的操作流程,分为两大部分。第一部分详细讲解了ECS的登录、密码重置、安全组设置及OSSUTIL工具的安装与配置,通过实验创建并管理存储桶,上传下载文件,确保资源及时释放。第二部分则聚焦于OSSFS工具的应用,演示如何将对象存储挂载为磁盘,进行大文件加载与模型训练,强调环境搭建(如Conda环境)及依赖安装步骤,确保实验结束后正确清理AccessKey和相关资源。整个过程注重操作细节与安全性,帮助用户高效利用云资源完成实验任务。
SQL 作为 SLS 基础功能,每天承载了用户大量日志数据的分析请求,既有小数据量的快速查询(如告警、即席查询等);也有上万亿数据规模的报表级分析。SLS 作为 Serverless 服务,除了要满足不同用户的各类需求,还要兼顾性能、隔离性、稳定性等要求。过去一年多的时间,SLS SQL 团队做了大量的工作,对 SQL 引擎进行了全新升级,SQL 的执行性能、隔离性等方面都有了大幅的提升。
目前阿里云 ARMS 已经基于 LLM 大模型实现了单链路智能诊断,综合调用链、方法栈、异常堆栈、SQL、指标等多模态数据,结合链路诊断领域专家经验,有效识别单次请求的错慢根因,并给出相应的优化建议。
针对本地存储和 PVC 这两种容器存储使用方式,我们对 ACK 的容器存储监控功能进行了全新升级。此次更新完善了对集群中不同存储类型的监控能力,不仅对之前已有的监控大盘进行了优化,还针对不同的云存储类型,上线了全新的监控大盘,确保用户能够更好地理解和管理容器业务应用的存储资源。
客户机房迁移过程中,发现不同 Pod 副本耗时前后相差 5 倍,本文介绍如何通过 ARMS 代码热点功能进行快速定位。
本文以DeepSeek模型为核心,探讨了其技术先进性、训练过程及行业影响。首先介绍DeepSeek的快速崛起及其对AI行业的颠覆作用。DeepSeek通过强化学习(RL)实现Time Scaling Law的新范式,突破了传统大模型依赖算力和数据的限制,展现了集成式创新的优势。文章还提到开源的重要性以及数据作为制胜法宝的关键地位,同时警示了业务发展中安全滞后的问题。
SLS 全新推出的「SQL 完全精确」模式,通过“限”与“换”的策略切换,在快速分析与精确计算之间实现平衡,满足用户对于超大数据规模分析结果精确的刚性需求。标志着其在超大规模日志数据分析领域再次迈出了重要的一步。
DDL是数据库所有SQL操作中最繁重的一种,本文总结介绍了云原生数据库PolarDB中DDL全链路MDL锁治理的经验和进展,持续优化用户的使用体验,为用户打造最佳的云原生数据库。