官方博客-第13页-阿里云开发者社区

  • 2025-04-17
    640

    MCP 的 AI 好搭档

    本文介绍了MCP(模型上下文协议)及其在AI领域的应用前景。MCP由Anthropic公司推出,通过标准化通信协议实现AI与数据源间的安全隔离,解决了传统AI应用中的数据隐私和安全问题。文章探讨了从LLM到MCP的进化过程,并分析了其面临的挑战,如算力不足和开放性需求。Serverless技术被提出作为解决这些问题的方案,提供弹性算力和支持安全沙箱环境。最后,文章提供了如何一键部署热门MCP Server的教程,帮助开发者快速上手并体验该协议的实际应用效果。

    640
  • 2025-08-26
    437

    云速搭 AI 助理发布:对话式生成可部署的阿里云架构图

    阿里云云速搭 CADT(Cloud Architect Design Tools)推出智能化升级——云小搭,一款基于大模型的 AI 云架构助手,致力于让每一位用户都能“动动嘴”就完成专业级云架构设计。

  • 2024-12-20
    1536

    Redis是如何建立连接和处理命令的

    本文主要讲述 Redis 是如何监听客户端发出的set、get等命令的。

    1,536
  • 2025-01-17
    2335

    详解MySQL字符集和Collation

    MySQL支持了很多Charset与Collation,并且允许用户在连接、Server、库、表、列、字面量多个层次上进行精细化配置,这有时会让用户眼花缭乱。本文对相关概念、语法、系统变量、影响范围都进行了详细介绍,并且列举了有可能让字符串发生字符集转换的情况,以及来自不同字符集的字符串进行比较等操作时遵循的规则。对于最常用的基于Unicode的字符集,本文介绍了Unicode标准与MySQL中各个字符集的关系,尤其详细介绍了当前版本(8.0.34)默认字符集utf8mb4。

    2,335
  • 2025-03-06
    1334

    一招解决数据库中报表查询慢的痛点

    本文旨在解决传统数据库系统如PostgreSQL在处理复杂分析查询时面临的性能瓶颈问题。

    1,334
  • 2025-04-29
    630

    剑指大规模 AI 可观测,阿里云 Prometheus 2.0 应运而生

    本文介绍了阿里云Prometheus 2.0方案,针对大规模AI系统的可观测性挑战进行全面升级。内容涵盖数据采集、存储、计算、查询及生态整合等维度。 Prometheus 2.0引入自研LoongCollector实现多模态数据采集,采用全新时序存储引擎提升性能,并支持RecordingRule与ScheduleSQL预聚合计算。查询阶段提供跨区域、跨账号的统一查询能力,结合PromQL与SPL语言增强分析功能。此外,该方案已成功应用于阿里云内部AI系统,如百炼、通义千问等大模型全链路监控。未来,阿里云将发布云监控2.0产品,进一步完善智能观测技术栈。

  • 2024-05-15
    189462

    Apache RocketMQ ACL 2.0 全新升级

    RocketMQ ACL 2.0 不管是在模型设计、可扩展性方面,还是安全性和性能方面都进行了全新的升级。旨在能够为用户提供精细化的访问控制,同时,简化权限的配置流程。欢迎大家尝试体验新版本,并应用在生产环境中。

    189,462
  • 2024-07-19
    13946

    Apache RocketMQ ACL 2.0 全新升级

    RocketMQ 作为一款流行的分布式消息中间件,被广泛应用于各种大型分布式系统和微服务中,承担着异步通信、系统解耦、削峰填谷和消息通知等重要的角色。随着技术的演进和业务规模的扩大,安全相关的挑战日益突出,消息系统的访问控制也变得尤为重要。然而,RocketMQ 现有的 ACL 1.0 版本已经无法满足未来的发展。因此,我们推出了 RocketMQ ACL 2.0 升级版,进一步提升 RocketMQ 数据的安全性。本文将介绍 RocketMQ ACL 2.0 的新特性、工作原理,以及相关的配置和实践。

    13,946
  • 2025-04-03
    786

    大模型上下文协议 MCP 带来了哪些货币化机会

    本文探讨了MCP(Model-Calling Protocol)的兴起及其对AI生态的影响。自2月中旬起,MCP热度显著提升,GitHub Star和搜索指数均呈现加速增长趋势。MCP通过标准化协议连接大模型与外部工具,解决了碎片化集成问题,推动AI应用货币化及生态繁荣。文章分析了MCP与Function Calling的区别,指出MCP更适用于跨平台、标准化场景,而Function Calling在特定实时任务中仍具优势。此外,MCP促进了 supply端(如云厂商、大模型、中间件服务商)和消费端(终端用户)的变革,尤其以Devin和Manus为代表,分别改变了程序员和普通用户的交互方式。

    786
  • 1
    ...
    12
    13
    14
    ...
    88
    到第