通义灵码Project Rules是一种针对AI代码生成的个性化规则设定工具,旨在解决AI生成代码不精准或不符合开发者需求的问题。通过定义编码规则(如遵循SOLID原则、OWASP安全规范等),用户可引导模型生成更符合项目风格和偏好的代码。例如,在使用阿里云百炼服务平台的curl调用时,通义灵码可根据预设规则生成Java代码,显著提升代码采纳率至95%以上。此外,还支持技术栈、应用逻辑设计、核心代码规范等多方面规则定制,优化生成代码的质量与安全性。
阿里云云速搭 CADT(Cloud Architect Design Tools)推出智能化升级——云小搭,一款基于大模型的 AI 云架构助手,致力于让每一位用户都能“动动嘴”就完成专业级云架构设计。
本文为大模型RAG对话系统最佳实践,旨在指引AI开发人员如何有效地结合LLM大语言模型的推理能力和外部知识库检索增强技术,从而显著提升对话系统的性能,使其能更加灵活地返回用户查询的内容。适用于问答、摘要生成和其他依赖外部知识的自然语言处理任务。通过该实践,您可以掌握构建一个大模型RAG对话系统的完整开发链路。
本文首先讲述了什么是单元测试、单元测试的价值、一个好的单元测试所具备的原则,进而引入如何去编写一个好的单元测试,通义灵码是如何快速生成单元测试的。
本文分享如何基于利用MCP协议,配置MCP Server,以调用大数据开发与治理平台DataWorks Open API搭建智能体Agent,实现通过自然语言完成数据集成与数据开发等任务。文章还介绍了MCP协议的基本知识,帮助大家了解背后实现原理。大家可以通过自行配置体验数据工作流智能自动化运行。
本文将深入剖析 MCP Server 的五种主流架构模式,并结合 Nacos 服务治理框架,为企业级 MCP 部署提供实用指南。
在企业云原生转型过程中,如何实现传统微服务与 Kubernetes 服务的配置统一管理、服务互通及协议转换成为关键挑战。MSE Nacos Controller 应运而生,作为连接 Kubernetes 与 Nacos 的桥梁,支持 ConfigMap 与 Nacos 配置双向同步、服务自动注册发现,并助力 Higress 等 MCP 网关实现 REST API 向 AI 可调用 MCP 服务的转换,全面提升系统治理能力与智能化水平。
介绍SLS在可观测数据融合分析的一系列技术升级,融合Trace、全栈监控、Continuous Profiling、移动端监控等功能,帮助大家更快速地构筑全栈、自动化的观测能力。
随着互联网从 Web 2.0 迈进到 AI 时代,用户和互联网的交互方式,AI 时代下互联网的内容生产流程都发生了显著的转变,这对基础设施(Infra)提出了新的诉求,也带来了新的机遇。Infra 包含的内容非常丰富,本文仅从网关层面分享笔者的所见所感所悟。