在系统开发、运维过程中,日志是最重要的信息之一,其最大的优点是简单直接。SLS 数据加工功能旨在解决非结构化的日志数据处理,当前全面升级,集成 SPL 语言、更强的数据处理性能、更优的使用成本。
阿里云云原生数据仓库AnalyticDB MySQL(ADB-M)与被OpenAI收购的实时分析数据库Rockset对比,两者在架构设计上有诸多相似点,例如存算分离、实时写入等,但ADB-M在多个方面展现出了更为成熟和先进的特性。ADB-M支持更丰富的弹性能力、强一致实时数据读写、全面的索引类型、高吞吐写入、完备的DML和Online DDL操作、智能的数据生命周期管理。在向量检索与分析上,ADB-M提供更高检索精度。ADB-M设计原理包括分布式表、基于Raft协议的同步层、支持DML和DDL的引擎层、高性能低成本的持久化层,这些共同确保了ADB-M在AI时代作为实时数据仓库的高性能与高性价比
为了帮助用户高效率、低成本应对企业级复杂场景,本文介绍 ComfyUI API Serverless 版解决方案,通过使用该方案,用户可以充分利用 ComfyUI +Serverless 技术优势快速开发上线 AI 绘画应用,期待为广大开发者 AI 绘画创业及变现提供思路。
本文将介绍阿里云如何将 Serverless 架构应用于消息队列,有效降低运营成本,同时利用云原生环境的特性,为 IoT 设备提供快速响应和灵活伸缩的通讯能力。
在当今数字化转型加速的时代,企业 IT 系统的复杂度与日俱增,如何高效地管理和监控这些系统成为了一项挑战。阿里云作为全球领先的云计算服务商,提供了一整套全面的可观测性解决方案,覆盖从业务、端侧(小程序、APP、H5 等)、应用、中间件、容器/ECS 等全栈的监控体系,旨在帮助企业构建强大而灵活的可观测性体系。其中,标签(Tag)作为一种核心组织和管理手段,在阿里云可观测体系中扮演着至关重要的角色。本文将深入探讨阿里云可观测系列产品中标签的应用,以及如何运用标签在阿里云可观测产品体系下进行体系化建设并给出相关最佳实践。
随着企业对云服务的广泛应用,数据安全成为重要课题。通过对云上数据进行敏感数据扫描和保护,可以有效提升企业或组织的数据安全。本文主要基于阿里云的数据安全中心数据识别功能进行深入实践探索。通过对商品购买日志的模拟,分析了如何使用阿里云的工具对日志数据进行识别、脱敏(3 种模式)处理和基于 StoreView 的查询脱敏方式,从而在保障数据安全的同时满足业务需求。通过这些实践,企业可以有效降低数据泄漏风险,提升数据治理能力和系统安全性。
为了高效地发现、定位和解决预发问题,闲鱼团队研发了一套异常日志问题自动追踪-定位-分发机制。这套机制通过自动化手段,实现了异常日志的定时扫描、精准定位和自动分发,显著降低了开发和测试的成本,提高了问题解决的效率。
阿里云云消息队列 Kafka 版 Serverless 系列凭借其卓越的弹性能力,为道旅科技提供了灵活高效的数据流处理解决方案。无论是应对突发流量还是规划长期资源需求,该方案均能帮助企业实现资源动态调整和成本优化,同时保障业务的高可用性和连续性。