本次课程由阿里云云原生架构师计缘分享,主题为“尽享红利,Serverless构建企业AI应用方案与实践”。课程分为四个部分:1) Serverless技术价值,介绍其发展趋势及优势;2) Serverless函数计算与AI的结合,探讨两者融合的应用场景;3) Serverless函数计算AIGC应用方案,展示具体的技术实现和客户案例;4) 业务初期如何降低使用门槛,提供新用户权益和免费资源。通过这些内容,帮助企业和开发者快速构建高效、低成本的AI应用。
从架构演进、网关优化到可观测体系构建等,UU 跑腿的云原生化,让 80% 的微服务轻松上云,还做到了 1 分钟弹性伸缩,实现了 80% 的运维成本降低。
当前,函数计算 FC 已被广泛应用在各种 AI 场景下,函数计算支持通过使用容器镜像部署 AI 推理应用,并且提供多种选项来访问训练好的模型。为了帮助开发者高效地在函数计算上部署 AI 推理应用,并快速解决不同场景下的模型存储选型问题,本文将对函数计算的 GPU 模型存储的优缺点及适用场景进行对比分析,以期为您的模型存储决策提供帮助。
下述报告主要整理自各大网站发布的对 2025 年可观测趋势的预测,作者合并同类项汇总 10 个共性的趋势,欢迎大家一起讨论。
本文介绍了阿里云容器服务(ACK)支持的StrmVol存储卷方案,旨在解决Kubernetes环境中海量小文件访问性能瓶颈问题。通过虚拟块设备与内核态文件系统(如EROFS)结合,StrmVol显著降低了小文件访问延迟,适用于AI训练集加载、时序日志分析等场景。其核心优化包括内存预取加速、减少I/O等待、内核态直接读取避免用户态切换开销,以及轻量索引快速初始化。示例中展示了基于Argo Workflows的工作流任务,模拟分布式图像数据集加载,测试结果显示平均处理时间为21秒。StrmVol适合只读场景且OSS端数据无需频繁更新的情况,详细使用方法可参考官方文档。
JManus 是面向 Java 的企业级通用智能体框架,支持多 Agent 框架、MCP 协议和 PLAN-ACT 模式,具备高可用、弹性伸缩的特性。结合阿里云 Serverless 运行时 SAE 和 FC,实现稳定安全的智能体应用部署与运行。
容管理系统是很常见的一种web应用场景,可以用到个人独立站,企业官网展示等场景,具有很高的实用价值,一个标准的内容管理系统主要由三个部分组成 主站展示部分、后台管理系统、API接口服务,本篇文章会以一个已有内容管理系统的Serverless架构重构展开,介绍改造的基本思路,改造细节,以及性能优化业务可观测设计等。涉及大家关心的Serverless生产遇到的一些问题,比如数据库、日志、动静态分离、调试、维护、灰度方案等。最真实的展现Serverless架构的实施落地细节。