RocketMQ 早期批处理模型存在一定的约束条件,为进一步提升性能,RocketMQ 进行了索引构建流水线改造,同时 BatchCQ 模型和 AutoBatch 模型也优化了批处理流程,提供了更简便的使用体验,快点击本文查看详情及配置展示~
本⽂对 Prompt 的使用方式进行了简单介绍,让大家了解到 Prompt 对于 LLM 的重要性。并尝试在 Prompt 中结合用户 Geo IP 信息,实现 LLM 的个性化回复,提升问答的准确度。
iLogtail 作为一款开创性的轻量级日志采集器,历经 13 载风雨,始终致力于高效地从多元化的数据源中萃取、处理可观测信息,并无缝传输至阿里云日志服务或各类日志分析平台。今年,适逢 iLogtail 开源两周年的里程碑时刻,我们将回顾 iLogtail 的技术演进之路,领略其不断突破边界、引领可观测采集未来的创新力量。
本文主要介绍了 ARMS 用户体验监控的基本功能特性,并介绍了在几种常见场景下的最佳实践。
本文将演示如何使用事件总线(EventBridge),向量检索服务(DashVector),函数计算(FunctionCompute)结合灵积模型服务[1]上的 Embedding API[2],来从 0 到 1 构建基于文本索引的构建+向量检索基础上的语义搜索能力。具体来说,我们将基于 OSS 文本文档动态插入数据,进行实时的文本语义搜索,查询最相似的相关内容。
数字时代的大潮中,编程不再高深莫测,而是每个人都可以尝试并享受的乐趣。今天,就让我们一起探索如何利用通义灵码的自然语言生成代码功能,轻松打造你的专属健康管理小程序,说不定在这个过程中,不管是身材管理,还是编程学习,都能让你离目标更近一步。
本文介绍了 GraalVM 静态编译技术在云原生环境下的应用:ARMS 发布了支持 GraalVM 应用的 Java Agent 探针,可为 GraalVM 应用提供开箱即用的可观测能力。同时,文章还提供了使用 ARMS 对 GraalVM 应用进行可观测的详细步骤。
本文为数据库「拥抱Data+AI」系列连载第1篇,该系列是阿里云瑶池数据库面向各行业Data+AI应用场景,基于真实客户案例&最佳实践,展示Data+AI行业解决方案的连载文章。本篇内容针对电商行业痛点,将深入探讨如何利用数据与AI技术以及数据分析方法论,为电商行业注入新的活力与效能。