本文将以 MCP Server 在函数计算平台的深度集成为研究载体,解构基于 SSE 长连接通信模型,剖析会话亲和、优雅升级等关键技术,揭示 Serverless 架构在 MCP 场景中的亲和性创新实践。
本文介绍了如何使用 llmaz 快速部署基于 vLLM 的大语言模型推理服务,并结合 Higress AI 网关实现流量控制、可观测性、故障转移等能力,构建稳定、高可用的大模型服务平台。
JSON 日志因灵活易扩展而广泛应用,但其海量数据也带来分析挑战。本文系统介绍阿里云日志服务(SLS)中处理 JSON 日志的最佳实践,涵盖数据预处理、索引配置、JSON 函数使用及 SQL 智能生成,助你高效挖掘日志价值。
在 AI 与云原生融合的趋势下,开发者面临模型协同与云端扩展的挑战。MCP(模型上下文协议)提供统一的交互规范,简化模型集成与服务开发。Function AI 支持 MCP 代码一键上云,提供绑定代码仓库、OSS 上传、本地交付物部署及镜像部署等多种构建方式,助力开发者高效部署智能服务,实现快速迭代与云端协同。
阿里云云效是国内领先的一站式DevOps平台,提供代码全生命周期管理、智能化交付流水线及精细化研发管控,支持多种开发场景。本文详细介绍了从其他平台(如Coding)向云效迁移的完整方案,包括代码仓库、流水线、制品仓库及项目数据的迁移步骤,帮助用户实现高效、安全的平滑迁移,提升研发效率与协作能力。
本文介绍了如何使用阿里云ROS资源编排服务快速部署和管理云资源。主要内容包括:1. 工具准备:安装ROSCDK,选择合适的代码编辑器和IDE,安装AI代码生成插件等。2. 环境准备:创建工程目录,进入虚拟环境,配置阿里云凭证信息,配置ROSCDK。3. 代码编写:根据文档描述,编写ROS代码来创建VPC、VSwitch、ECS等资源。4. 运行代码:执行ROS代码,创建ECS实例并部署FTP服务。总体来说,本文通过简单的步骤,让小白也能快速上手使用ROS资源编排服务,实现自动化部署和管理阿里云资源。