官方博客-第13页-阿里云开发者社区

  • 2024-12-27
    1604

    极简开发,极速上线:构建端到端大模型应用

    本文将以一个经典的 RAG(检索增强生成)知识问答系统为例,详细介绍从智能体设计到最终应用部署的全流程。

    1,604
  • 2025-05-16
    684

    日志采集 Agent 性能大比拼——LoongCollector 性能深度测评

    为了展现 LoongCollector 的卓越性能,本文通过纵向(LoongCollector 与 iLogtail 产品升级对比)和横向(LoongCollector 与其他开源日志采集 Agent 对比)两方面对比,深度测评不同采集 Agent 在常见的日志采集场景下的性能。

  • 2025-01-14
    741

    网络安全视角:从地域到账号的阿里云日志审计实践

    日志审计的必要性在于其能够帮助企业和组织落实法律要求,打破信息孤岛和应对安全威胁。选择 SLS 下日志审计应用,一方面是选择国家网络安全专用认证的日志分析产品,另一方面可以快速帮助大型公司统一管理多组地域、多个账号的日志数据。除了在日志服务中存储、查看和分析日志外,还可通过报表分析和告警配置,主动发现潜在的安全威胁,增强云上资产安全。

    741
  • 2025-08-01
    1058

    Vibecoding 新体验:实测 Qwen3 Coder 代码生成效果

    Qwen3 Coder 是全球领先的开源编程大模型,具备强大的代码生成能力与1M超长上下文支持,适用于构建复杂应用。本文通过实际案例展示其在电商网站开发中的应用,并详解提示词设计、技术拆解与部署方案,探讨Agentic AI落地的挑战与经验。

  • 【深度】企业 AI 落地实践(四):如何构建端到端的 AI 应用观测体系

    本文探讨了AI应用在实际落地过程中面临的三大核心问题:如何高效使用AI模型、控制成本以及保障输出质量。文章详细分析了AI应用的典型架构,并提出通过全栈可观测体系实现从用户端到模型推理层的端到端监控与诊断。结合阿里云的实践经验,介绍了基于OpenTelemetry的Trace全链路追踪、关键性能指标(如TTFT、TPOT)采集、模型质量评估与MCP工具调用观测等技术手段,帮助企业在生产环境中实现AI应用的稳定、高效运行。同时,针对Dify等低代码平台的应用部署与优化提供了具体建议,助力企业构建可扩展、可观测的AI应用体系。

  • 2023-05-15
    7514

    消息队列之 MetaQ 和 Kafka 区别和优势详解

    本篇文章介绍MetaQ和Kafka这两个消息队列的区别和优势。

    7,514
  • 9161

    基于RAG搭建企业级知识库在线问答

    本文介绍如何使用搜索开发工作台快速搭建基于RAG开发链路的知识库问答应用。

  • 2024-10-22
    1220

    最佳实践:通义灵码生成单元测试,让单测更简单

    本文首先讲述了什么是单元测试、单元测试的价值、一个好的单元测试所具备的原则,进而引入如何去编写一个好的单元测试,通义灵码是如何快速生成单元测试的。

    1,220
  • 2024-11-06
    1754

    Serverless 微服务治理神器: 阿里云 SAE 全链路灰度揭秘

    SAE 会继续致力于为用户提供极简易用、成本低廉、功能强大的 Serverless 应用全托管平台:“我们希望让用户做的更少而收获更多,通过 Serverless 化,深度用云就像用水电煤一样简单”。

    1,754
  • 1
    ...
    12
    13
    14
    ...
    79
    到第