在今天这样以AIGC为代表的AI时代下,了解训练场景对于存储的具体诉求同样是至关重要的。本文将尝试解读WEKA的一个相关报告,来看看AIGC对于存储有哪些具体的性能要求。
聚焦在Buffer Pool的本职功能上,从其提供的接口、内存组织方式、Page获取、刷脏等方面进行介绍
本文整理自阿里云高级专家喻良,在 Flink Forward Asia 2023 主会场的分享。
为什么需要可观测性?可观测性技术对业务团队的价值有哪些?如何建设一个可观测性技术体系?本文将从整体架构到核心设计一一为大家讲解。
背景PolarDB 的云原生存算分离架构, 具备低廉的数据存储、高效扩展弹性、高速多机并行计算能力、高速数据搜索和处理; PolarDB与计算算法结合, 将实现双剑合璧, 推动业务数据的价值产出, 将数据变成生产力.本文将介绍PolarDB 开源版 使用PostGIS 数据寻龙点穴(空间聚集分析)-...
Hologres现在仍然是TPCH-30000榜单的全球第一,领先第二名高达23%,最新发布的2.2版本相比之前的1.x的版本性能大约提升100%。
阿里云云原生数据仓库AnalyticDB MySQL(ADB-M)与被OpenAI收购的实时分析数据库Rockset对比,两者在架构设计上有诸多相似点,例如存算分离、实时写入等,但ADB-M在多个方面展现出了更为成熟和先进的特性。ADB-M支持更丰富的弹性能力、强一致实时数据读写、全面的索引类型、高吞吐写入、完备的DML和Online DDL操作、智能的数据生命周期管理。在向量检索与分析上,ADB-M提供更高检索精度。ADB-M设计原理包括分布式表、基于Raft协议的同步层、支持DML和DDL的引擎层、高性能低成本的持久化层,这些共同确保了ADB-M在AI时代作为实时数据仓库的高性能与高性价比
SAE 提供了一个开箱即用的 Serverless PaaS 平台,提供了微服务、监控等能力,帮助敦煌智旅很好地解决了发版困难、运维困难、弹性能力不足和资源利用率低等痛点问题。成功实现轻松应对 10 倍突增流量洪峰,运维效率大幅提升。