官方博客-第3页-阿里云开发者社区

  • 2024-05-15
    102599

    大语言模型推理提速,TensorRT-LLM 高性能推理实践

    大型语言模型(Large language models,LLM)是基于大量数据进行预训练的超大型深度学习模型,本文主要讲述TensorRT-LLM利用量化、In-Flight Batching、Attention、Graph Rewriting提升 LLM 模型推理效率。

    102,599
  • 2024-05-15
    117983

    日志服务 HarmonyOS NEXT 日志采集最佳实践

    鸿蒙操作系统(HarmonyOS)上的日志服务(SLS)SDK 提供了针对 IoT、移动端到服务端的全场景日志采集、处理和分析能力,旨在满足万物互联时代下应用的多元化设备接入、高效协同和安全可靠运行的需求。

    117,983
  • 2025-03-21
    1296

    AI 推理场景的痛点和解决方案

    一个典型的推理场景面临的问题可以概括为限流、负载均衡、异步化、数据管理、索引增强 5 个场景。通过云数据库 Tair 丰富的数据结构可以支撑这些场景,解决相关问题,本文我们会针对每个场景逐一说明。

    1,296
  • 2024-05-15
    222169

    Kube Queue:Kubernetes 任务排队的利器

    Kube Queue:Kubernetes 任务排队的利器

    222,169
  • 2023-12-01
    2234

    [重磅更新]PolarDB-X V2.3 集中式和分布式一体化开源发布

    2023年云栖大会,PolarDB-X 正式发布 2.3.0版本,重点推出PolarDB-X标准版(集中式形态),将PolarDB-X分布式中的DN节点提供单独服务,支持paxos协议的多副本模式、lizard分布式事务引擎,可以100%兼容MySQL。同时在性能场景上,采用生产级部署和参数(开启双1 + Paxos多副本强同步),相比于开源MySQL 8.0.34,PolarDB-X在读写混合场景上有30~40%的性能提升,可以作为开源MySQL的最佳替代选择。

  • 2024-12-20
    1019

    AI场景下的对象存储OSS数据管理实践

    本文介绍了对象存储(OSS)在AI业务中的应用与实践。内容涵盖四个方面:1) 对象存储作为AI数据基石,因其低成本和高弹性成为云上数据存储首选;2) AI场景下的对象存储实践方案,包括数据获取、预处理、训练及推理阶段的具体使用方法;3) 国内主要区域的默认吞吐量提升至100Gbps,优化了大数据量下的带宽需求;4) 常用工具介绍,如OSSutil、ossfs、Python SDK等,帮助用户高效管理数据。重点讲解了OSS在AI训练和推理中的性能优化措施,以及不同工具的特点和应用场景。

  • 2024-12-20
    1028

    AI场景下的对象存储OSS数据管理实践

    本文介绍了ECS和OSS的操作流程,分为两大部分。第一部分详细讲解了ECS的登录、密码重置、安全组设置及OSSUTIL工具的安装与配置,通过实验创建并管理存储桶,上传下载文件,确保资源及时释放。第二部分则聚焦于OSSFS工具的应用,演示如何将对象存储挂载为磁盘,进行大文件加载与模型训练,强调环境搭建(如Conda环境)及依赖安装步骤,确保实验结束后正确清理AccessKey和相关资源。整个过程注重操作细节与安全性,帮助用户高效利用云资源完成实验任务。

  • 2025-01-06
    426

    OpenAI 宕机思考丨Kubernetes 复杂度带来的服务发现系统的风险和应对措施

    Kubernetes 体系基于 DNS 的服务发现为开发者提供了很大的便利,但其高度复杂的架构往往带来更高的稳定性风险。以 Nacos 为代表的独立服务发现系统架构简单,在 Kubernetes 中选择独立服务发现系统可以帮助增强业务可靠性、可伸缩性、性能及可维护性,对于规模大、增长快、稳定性要求高的业务来说是一个较理想的服务发现方案。希望大家都能找到适合自己业务的服务发现系统。

    426
  • 2024-08-06
    1482

    AnalyticDB for MySQL:AI时代实时数据分析的最佳选择

    阿里云云原生数据仓库AnalyticDB MySQL(ADB-M)与被OpenAI收购的实时分析数据库Rockset对比,两者在架构设计上有诸多相似点,例如存算分离、实时写入等,但ADB-M在多个方面展现出了更为成熟和先进的特性。ADB-M支持更丰富的弹性能力、强一致实时数据读写、全面的索引类型、高吞吐写入、完备的DML和Online DDL操作、智能的数据生命周期管理。在向量检索与分析上,ADB-M提供更高检索精度。ADB-M设计原理包括分布式表、基于Raft协议的同步层、支持DML和DDL的引擎层、高性能低成本的持久化层,这些共同确保了ADB-M在AI时代作为实时数据仓库的高性能与高性价比

    1,482
  • 1
    2
    3
    4
    ...
    29
    到第
    3/29