官方博客-第4页-阿里云开发者社区

  • 60876

    突破大表瓶颈|小鹏汽车使用PolarDB实现百亿级表高频更新和实时分析

    PolarDB已经成为小鹏汽车应对TB级别大表标注、分析查询的"利器"。

  • 705

    内附原文|SIGMOD’24:百万核的智能调度,云数仓如何结合AI处理用户混合负载

    论文提出的Flux通过使用AI技术将短时和长时查询解耦进行自动弹性,解决了云数据仓库的性能瓶颈,同时支持了资源按需预留。Flux优于传统的方法,查询响应时间 (RT) 最多可减少75%,资源利用率提高19.0%,成本开销降低77.8%。

  • 2024-11-25
    515

    智能调度、秒级弹性|一文带你探索Compaction Service的进化之路

    ADB MySQL的Compaction Service功能通过将Compaction任务从存储节点解耦至独立的弹性资源池执行,解决了资源隔离性弱、并发度低等问题,实现了资源消耗降低50%,任务执行时间平均减少40%,并支持按量付费,提升了系统的稳定性和成本效益。

  • 2024-08-06
    1370

    AnalyticDB for MySQL:AI时代实时数据分析的最佳选择

    阿里云云原生数据仓库AnalyticDB MySQL(ADB-M)与被OpenAI收购的实时分析数据库Rockset对比,两者在架构设计上有诸多相似点,例如存算分离、实时写入等,但ADB-M在多个方面展现出了更为成熟和先进的特性。ADB-M支持更丰富的弹性能力、强一致实时数据读写、全面的索引类型、高吞吐写入、完备的DML和Online DDL操作、智能的数据生命周期管理。在向量检索与分析上,ADB-M提供更高检索精度。ADB-M设计原理包括分布式表、基于Raft协议的同步层、支持DML和DDL的引擎层、高性能低成本的持久化层,这些共同确保了ADB-M在AI时代作为实时数据仓库的高性能与高性价比

    1,370
  • 2024-09-13
    756

    Text-to-SQL技术演进 - 阿里云OpenSearch-SQL在BIRD榜单夺冠方法剖析

    本文主要介绍了阿里云OpenSearch在Text-to-SQL任务中的最新进展和技术细节。

    756
  • 1515

    拥抱Data+AI|“全球第一”雅迪如何实现智能营销?DMS+PolarDB注入数据新活力

    针对雅迪“云销通App”的需求与痛点,本文将介绍阿里云瑶池数据库DMS+PolarDB for AI提供的一站式Data+AI解决方案,助力销售人员高效用数,全面提升销售管理效率。

  • 905

    拥抱Data+AI|B站引入阿里云DMS+X,利用AI赋能运营效率10倍提升

    本篇文章针对B站在运营场景中的痛点,深入探讨如何利用阿里云Data+AI解决方案实现智能问数服务,赋能平台用户和运营人员提升自助取数和分析能力,提高价值交付效率的同时为数据平台减负。

  • 2023-07-21
    138757

    如何使用AnalyticDB PostgreSQL 版实现“一站式全文检索”业务

    本文从阿里云用户使用云原生数据仓库AnalyticDB PostgreSQL版(以下简称ADB PG)的实际体验出发,介绍ADB PG如何实现“一站式全文检索”业务,并详细阐述ADB PG使用的优势技术,最后提供对应业务案例分析。

    138,757
  • 2023-09-18
    47922

    一次访问Redis延时高问题排查与总结(2)

    本文是一次访问Redis延时高问题排查与总结的续篇,主要讲述了当时没有发现的一些问题和解决方案。

    47,922
  • 1
    ...
    3
    4
    5
    ...
    18
    到第
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    4/18