官方博客-第4页-阿里云开发者社区

  • 701

    7倍性能提升|阿里云AnalyticDB Spark向量化能力解析

    AnalyticDB Spark如何通过向量化引擎提升性能?

  • 834

    拥抱Data+AI|B站引入阿里云DMS+X,利用AI赋能运营效率10倍提升

    本篇文章针对B站在运营场景中的痛点,深入探讨如何利用阿里云Data+AI解决方案实现智能问数服务,赋能平台用户和运营人员提升自助取数和分析能力,提高价值交付效率的同时为数据平台减负。

  • 2024-12-20
    1475

    Redis是如何建立连接和处理命令的

    本文主要讲述 Redis 是如何监听客户端发出的set、get等命令的。

    1,475
  • 2023-09-14
    908

    沉浸式学习PostgreSQL|PolarDB 13: 博客、网站按标签内容检索, 并按匹配度排序

    本文主要教大家怎么用好数据库, 而不是怎么运维管理数据库、怎么开发数据库内核.

    908
  • 2023-10-07
    1502

    沉浸式学习PostgreSQL|PolarDB 18: 通过GIS轨迹相似伴随|时态分析|轨迹驻点识别等技术对拐卖、诱骗场景进行侦查

    本文主要教大家怎么用好数据库, 而不是怎么运维管理数据库、怎么开发数据库内核.

    1,502
  • 125835

    PolarDB闪电助攻,《香肠派对》百亿好友关系实现毫秒级查询

    PolarDB分布式版助力《香肠派对》实现百亿好友关系20万QPS的毫秒级查询。

  • 2024-08-06
    1306

    AnalyticDB for MySQL:AI时代实时数据分析的最佳选择

    阿里云云原生数据仓库AnalyticDB MySQL(ADB-M)与被OpenAI收购的实时分析数据库Rockset对比,两者在架构设计上有诸多相似点,例如存算分离、实时写入等,但ADB-M在多个方面展现出了更为成熟和先进的特性。ADB-M支持更丰富的弹性能力、强一致实时数据读写、全面的索引类型、高吞吐写入、完备的DML和Online DDL操作、智能的数据生命周期管理。在向量检索与分析上,ADB-M提供更高检索精度。ADB-M设计原理包括分布式表、基于Raft协议的同步层、支持DML和DDL的引擎层、高性能低成本的持久化层,这些共同确保了ADB-M在AI时代作为实时数据仓库的高性能与高性价比

    1,306
  • 2023-09-14
    25775

    沉浸式学习PostgreSQL|PolarDB 16: 植入通义千问大模型+文本向量化模型, 让数据库具备AI能力

    本文将带领大家来体验一下如何将“千问大模型+文本向量化模型”植入到PG|PolarDB中, 让数据库具备AI能力.

    25,775
  • 1
    ...
    3
    4
    5
    ...
    17
    到第
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    4/17