针对雅迪“云销通App”的需求与痛点,本文将介绍阿里云瑶池数据库DMS+PolarDB for AI提供的一站式Data+AI解决方案,助力销售人员高效用数,全面提升销售管理效率。
本文从阿里云用户使用云原生数据仓库AnalyticDB PostgreSQL版(以下简称ADB PG)的实际体验出发,介绍ADB PG如何实现“一站式全文检索”业务,并详细阐述ADB PG使用的优势技术,最后提供对应业务案例分析。
MySQL支持了很多Charset与Collation,并且允许用户在连接、Server、库、表、列、字面量多个层次上进行精细化配置,这有时会让用户眼花缭乱。本文对相关概念、语法、系统变量、影响范围都进行了详细介绍,并且列举了有可能让字符串发生字符集转换的情况,以及来自不同字符集的字符串进行比较等操作时遵循的规则。对于最常用的基于Unicode的字符集,本文介绍了Unicode标准与MySQL中各个字符集的关系,尤其详细介绍了当前版本(8.0.34)默认字符集utf8mb4。
本文为数据库「拥抱Data+AI」系列连载第1篇,该系列是阿里云瑶池数据库面向各行业Data+AI应用场景,基于真实客户案例&最佳实践,展示Data+AI行业解决方案的连载文章。本篇内容针对电商行业痛点,将深入探讨如何利用数据与AI技术以及数据分析方法论,为电商行业注入新的活力与效能。
本文介绍PolarDB-X数据库实现了基于标签的访问控制功能,可以在行、列级别对数据访问进行控制,精细化的限制用户对数据的访问和操作,保证了读写数据的安全。下文根据实际应用场景,介绍PolarDB-X的LBAC功能设计以及使用方法。