SLS性能持续分析基于开放的接入生态与持续性能分析的理念所构建(开放接入部分已在iLogtail开源),基于SLS 性能持续分析,将为广大开发者提供开箱即用、一站式的的性能观测体验,助力开发者轻松面对多云、多Region、多版本、微服务等场景下的性能分析需求。
本文旨在介绍钉钉 Android 团队死循环检测工具建设的思路和典型案例的修复历程。希望通过此次分享,对同样面临类似死循环问题的团队能够有所启发。
通过函数计算的能力让阿里云的文档从静态展示升级为动态可操作验证,用户在文档中单击一键部署可快速完成代码的部署及测试。这一改变已在函数计算的活动沙龙中得到用户的认可。
好的单元测试不仅可以验证代码结构设计的是否合理,而且可以提前发现代码中的漏洞,将线上风险扼杀在摇篮中。本文从常用的单元测试框架出发,对Mockito框架深入浅出的讲解,希望能帮到每一位同学。
口腔治疗+函数计算=效率提升🚀 领健作为业界领先的口腔机构,面向口腔诊所提供正畸算法,但早期的算法部署遇到较多问题,因此在对比了阿里云的多个云产品之后,最终选择了函数计算。 通过将 GPU 计算负载放到函数计算,领健技术团队达到了很好的降本效果,相比早前的按月持有 GPU 资源,函数计算的费用降低了 90% 左右,并大大提升了使用体验,实现了前所未有的敏捷性和效率。
本文介绍了Serverless的发展历程及SAE(Serverless Application Engine)产品。首先,回顾了云计算从物理机、虚拟机到容器化再到Serverless的演进过程,并解释了Serverless的核心特点:无需管理底层资源、自动弹性伸缩、聚焦业务价值。接着,详细介绍了SAE的功能与优势,包括简化部署流程、支持多种弹性策略和提供丰富的运维工具。SAE的收费模式主要基于CPU和内存使用量,辅以请求数和流量计费,用户可以选择按量付费或预付费资源包。最后,通过极氪汽车、南瓜电影、视野数科和SKG等实际案例,展示了SAE在不同行业的应用效果。
当前,函数计算 FC 已被广泛应用在各种 AI 场景下,函数计算支持通过使用容器镜像部署 AI 推理应用,并且提供多种选项来访问训练好的模型。为了帮助开发者高效地在函数计算上部署 AI 推理应用,并快速解决不同场景下的模型存储选型问题,本文将对函数计算的 GPU 模型存储的优缺点及适用场景进行对比分析,以期为您的模型存储决策提供帮助。
SLS 是阿里云可观测家族的核心产品之一,提供全托管的可观测数据服务。本文以 o11y 2.0 为引子,整理了可观测数据 Pipeline 的演进和一些思考。