官方博客-第9页-阿里云开发者社区

  • 2023-07-21
    138777

    如何使用AnalyticDB PostgreSQL 版实现“一站式全文检索”业务

    本文从阿里云用户使用云原生数据仓库AnalyticDB PostgreSQL版(以下简称ADB PG)的实际体验出发,介绍ADB PG如何实现“一站式全文检索”业务,并详细阐述ADB PG使用的优势技术,最后提供对应业务案例分析。

    138,777
  • 2024-05-15
    121945

    Ganos实时热力聚合查询能力解析与最佳实践

    本文主要介绍Ganos实时热力聚合查询并动态输出热力瓦片能力,依托阿里云PolarDB PostgreSQL产品、ADB PostgreSQL和RDS PostgreSQL 三款数据库建设输出。

    121,945
  • 2024-05-15
    123412

    提升团队工程交付能力,从“看见”工程活动和研发模式开始

    本文从统一工程交付的概念模型开始,介绍了如何将应用交付的模式显式地定义出来,并通过工具平台落地。

    123,412
  • 2024-07-22
    16464

    超越流水线,企业研发规范落地新思路

    一文详解研发规范的目标、常见误区、选型方法与常见最佳实践。

    16,464
  • 2024-09-05
    412

    软件测试之道 -- 做一个有匠心的程序员

    作者一年前围绕设计模式与代码重构写了一篇《代码整洁之道 -- 告别码农,做一个有思想的程序员!》的文章。本文作为续篇,从测试角度谈程序员对软件质量的追求。

    412
  • 2024-10-21
    872

    浅析MySQL优化器统计信息

    本文基于MySQL 8.0.34版本的源代码,详细介绍了MySQL中统计信息的计算和更新机制。文章首先概述了`records_per_key`统计信息在代价估计和Join Reorder算法中的重要性,接着了InnoDB统计信息的存储和计算方法,包括表级和索引级的统计信息。文章还介绍了统计信息的采样算法,特别是重要性采样在减少估计方差中的应用。此外,文章讨论了统计信息的更新时机,包括手动更新和自动更新。最后,文章简要介绍了直方图和其它统计信息,如表在内存中的占比估计,并通过实例展示了如何使用optimizer trace来分析查询优化过程。希望本文能帮助读者更好地理解MySQL的优化器。

    872
  • 1384

    拥抱Data+AI|破解电商7大挑战,DMS+AnalyticDB助力企业智能决策

    本文为数据库「拥抱Data+AI」系列连载第1篇,该系列是阿里云瑶池数据库面向各行业Data+AI应用场景,基于真实客户案例&最佳实践,展示Data+AI行业解决方案的连载文章。本篇内容针对电商行业痛点,将深入探讨如何利用数据与AI技术以及数据分析方法论,为电商行业注入新的活力与效能。

  • 2025-01-23
    647

    MySQL索引学习笔记

    本文深入探讨了MySQL数据库中慢查询分析的关键概念和技术手段。

    647
  • 2025-04-17
    688

    MCP 的 AI 好搭档

    本文介绍了MCP(模型上下文协议)及其在AI领域的应用前景。MCP由Anthropic公司推出,通过标准化通信协议实现AI与数据源间的安全隔离,解决了传统AI应用中的数据隐私和安全问题。文章探讨了从LLM到MCP的进化过程,并分析了其面临的挑战,如算力不足和开放性需求。Serverless技术被提出作为解决这些问题的方案,提供弹性算力和支持安全沙箱环境。最后,文章提供了如何一键部署热门MCP Server的教程,帮助开发者快速上手并体验该协议的实际应用效果。

    688
  • 1
    ...
    8
    9
    10
    ...
    35
    到第
    9/35