本文是[全景剖析容器网络数据链路]第六部分部分,主要介绍ASM Istio模式下,数据面链路的转转发链路。
Kubernetes 作为当今云原生业界标准,具备良好的生态以及跨云厂商能力。Kubernetes 很好的抽象了 IaaS 资源交付标准,使得云资源交付变的越来越简单,与此同时用户期望更多的聚焦于业务自身,做到面向应用交付,Serverless 理念也因此而生。 那么如何通过原生 k8s 提供Serverless 能力?如何实现GPU等异构资源按需使用?这里给大家介绍一下我们在Serverless Kubernetes 开发实践:异构资源,按需使用。
广义上的链路成本,既包含使用链路追踪产生的数据生成、采集、计算、存储、查询等额外资源开销,也包含链路系统接入、变更、维护、协作等人力运维成本。为了便于理解,本小节将聚焦在狭义上的链路追踪机器资源成本,人力成本将在下一小节(效率)进行介绍。
本文介绍如何使用TFJob在ASK+ECI场景下,快速完成基于GPU的TensorFlow分布式训练任务。
随着容器技术的普及,有越来越多的用户开始在私有环境中搭建K8s来使用,这时候就很容易遇到一个问题,私有环境资源交付周期太长,不能完全释放K8s动态扩容的能力,本文就是介绍如何利用ACK注册集群解决这个问题,让云下的K8s集群也可以享受云上一样的资源快速交付能力。
一家多业务组织的客户来说往往会有多个云账号,分别部署各个业务线的容器服务。但集团可能想使用一套统一的容器镜像仓库(ACR),就会面临多账号内多个ACK共享一套ACR了。那如何合理规划好ACR实例上的命名空间,打通各个业务ACK集群与ACR的网络,包括如何精细化授权,都是客户需要考虑的。
通过EMR+DLF数据湖方案,可以为企业提供数据湖内的统一的元数据管理,统一的权限管理,支持多源数据入湖以及一站式数据探索的能力。本方案支持已有EMR集群元数据库使用RDS或内置MySQL数据库迁移DLF,通过统一的元数据管理,多种数据源入湖,搭建高效的数据湖解决方案。