本文主要介绍基于 MaxCompute 的离线近实时一体化新架构如何来支持这些综合的业务场景,提供基于Delta Table的近实时增全量一体的数据存储和计算解决方案。
本文介绍了MCP(模型上下文协议)及其在AI领域的应用前景。MCP由Anthropic公司推出,通过标准化通信协议实现AI与数据源间的安全隔离,解决了传统AI应用中的数据隐私和安全问题。文章探讨了从LLM到MCP的进化过程,并分析了其面临的挑战,如算力不足和开放性需求。Serverless技术被提出作为解决这些问题的方案,提供弹性算力和支持安全沙箱环境。最后,文章提供了如何一键部署热门MCP Server的教程,帮助开发者快速上手并体验该协议的实际应用效果。
本文提供一种相对Sidecar部署更轻量级的采集方式,只需要部署少量的Logtail容器,即可采集不同业务容器的日志。
 
              介绍SLS在可观测数据融合分析的一系列技术升级,融合Trace、全栈监控、Continuous Profiling、移动端监控等功能,帮助大家更快速地构筑全栈、自动化的观测能力。
企业 FinOps 实施不是一蹴而就的项目,如果您正在推进企业云原生 FinOps 落地,除了选择合适的技术手段,企业内部的流程和体系建设也尤为重要。
今天分享一下,基于阿里云函数计算 FC 以及 CAP(云应用开发平台),极速托管专属的 CosyVoice 应用。并且我们提供了 API 调用方案以及镜像构建源码方便您根据自己的业务任意 DIY。
Kubernetes 体系基于 DNS 的服务发现为开发者提供了很大的便利,但其高度复杂的架构往往带来更高的稳定性风险。以 Nacos 为代表的独立服务发现系统架构简单,在 Kubernetes 中选择独立服务发现系统可以帮助增强业务可靠性、可伸缩性、性能及可维护性,对于规模大、增长快、稳定性要求高的业务来说是一个较理想的服务发现方案。希望大家都能找到适合自己业务的服务发现系统。