容管理系统是很常见的一种web应用场景,可以用到个人独立站,企业官网展示等场景,具有很高的实用价值,一个标准的内容管理系统主要由三个部分组成 主站展示部分、后台管理系统、API接口服务,本篇文章会以一个已有内容管理系统的Serverless架构重构展开,介绍改造的基本思路,改造细节,以及性能优化业务可观测设计等。涉及大家关心的Serverless生产遇到的一些问题,比如数据库、日志、动静态分离、调试、维护、灰度方案等。最真实的展现Serverless架构的实施落地细节。
如何基于向量数据库+LLM(大语言模型),打造更懂你的企业专属Chatbot。
本文所涉及的实验体验的就是怎么建设AI的外脑?向量数据库的核心价值:AI外脑
本文主要介绍阿里云 Serverless 应用引擎如何帮助企业跨越技术鸿沟,从传统应用架构无感升级到 Serverless 架构,以更高效、更经济的方式进行转型,快速进入云原生快车道,让 2 人的研发团队享受 2000 人技术团队的红利。
DataphinV3.14支持传统数据库调用,带来全新高效研发体验,及时全面的数据保护、自定义监控和审批让数据治理更灵活自由。
本文介绍如何使用函数计算 GPU 实例闲置模式低成本、快速的部署 Google Gemma 模型服务。
本文将AI项目与Serverless架构进行结合,在Serverless架构下用20行Python代码搞定图像分类和预测。
在数据时代,过多耗内存的大查询都有可能压垮整个集群,所以其内存管理模块在整个系统中扮演着非常重要的角色。而PolarDB-X 作为一款分布式数据库,其面对的数据可能从TB到GB字节不等,同时又要支持TP和AP Workload,要是在计算过程中内存使用不当,不仅会造成TP和AP相互影响,严重拖慢响应时间,甚至会出现内存雪崩、OOM问题,导致数据库服务不可用。CPU和MEMORY相对于网络带宽比较昂贵,所以PolarDB-X 代价模型中,一般不会将涉及到大量数据又比较耗内存的计算下推到存储DN,DN层一般不会有比较耗内存的计算。这样还有一个好处,当查询性能低的时候,无状态的CN节点做弹性扩容代价相对于DN也低。鉴于此,所以本文主要对PolarDB-X计算层的内存管理进行分析,这有助于大家有PolarDB-X有更深入的理解。
为应对分布式云多集群监控的挑战,阿里云可观测监控 Prometheus 版结合 ACK One,凭借高效纳管与全局监控方案有效破解了用户在该场景的监控运维痛点,为日益增长的业务需求提供了一站式、高效、统一的监控解决方案,实现成本与运维效率的双重优化。助力企业的数字化转型与业务快速增长,在复杂多变的云原生时代中航行,提供了一个强有力的罗盘与风帆。