本文旨在对 Istio Ambient Mesh 的流量路径进行详细解读,力求尽可能清晰地呈现细节,以帮助读者完全理解 Istio Ambient Mesh 中最为关键的部分。
本文旨在介绍钉钉 Android 团队死循环检测工具建设的思路和典型案例的修复历程。希望通过此次分享,对同样面临类似死循环问题的团队能够有所启发。
你的useMemo真正为你的项目带来了多少性能上的优化?由于useMemo和useCallback类似,所以本文全文会在大部分地方以useMemo为例,部分例子使用useCallback帮助大家更好的理解两个hooks。
复杂的运行环境、巨大的部署量和高速发展业务迭代对 Agent 的软件工程质量带来了巨大挑战。基于阿里云可观测团队多年的开发和运维经验,本文将分享如何构建和执行可靠性工程策略。
本文介绍了对象存储(OSS)在AI业务中的应用与实践。内容涵盖四个方面:1) 对象存储作为AI数据基石,因其低成本和高弹性成为云上数据存储首选;2) AI场景下的对象存储实践方案,包括数据获取、预处理、训练及推理阶段的具体使用方法;3) 国内主要区域的默认吞吐量提升至100Gbps,优化了大数据量下的带宽需求;4) 常用工具介绍,如OSSutil、ossfs、Python SDK等,帮助用户高效管理数据。重点讲解了OSS在AI训练和推理中的性能优化措施,以及不同工具的特点和应用场景。
在业务场景中,日志数据可能存储在日志服务 Project 的不同 Logstore/MetricStore 中或不同地域的 Project 中。日志服务的数据集(StoreView)功能支持跨地域、跨 Store 联合查询和分析,让用户基于数据集就能高效便捷地查询分析全地域的数据,真正做到数据分析不受地域边界的限制。