基于单个开源小模型的工具调用Agent,由于模型容量和预训练能力获取的限制,无法在推理和规划、工具调用、回复生成等任务上同时获得比肩大模型等性能。
本文深入探讨当前最前沿的prompt engineering方案,结合OpenAI、Anthropic和Google等大模型公司的资料,以及开源社区中宝贵的prompt技巧分享,全面解析这一领域的实践策略。
本文主要讲述在处理票据信息结构化提取任务时,如何结合OCR(光学字符识别)技术和多模态大模型Qwen-VL来提高票据信息提取的准确性和效率。
本次分享意在帮助用户更加全面、深入地了解百炼的核心产品能力,并通过实际操作学会如何快速将大模型与自己的系统及应用相结合。主要包括以下三个方面: 1. 阿里云百炼产品定位和能力简介 2. 知识检索 RAG 智能体应用能力和优势 3. 最佳落地案例实践分享
聚焦于企业部署 DeepSeek 的应用需求,本文介绍了模型权重下载及多种部署方案,还阐述了大模型应用落地的常见需求,帮助用户逐步提升模型应用效果。
本文提供在阿里云云服务器ECS上基于CentOS 7.9 64位操作系统搭建高可用的小程序服务端的指引。同时指导您在本地开发一个简单的微信/支付宝小程序——ECS小助手,通过远程调用部署在ECS上的服务端,实现在小程序中输入框输入ECS实例ID查询实例详细信息的功能。
prompt工程不需要复杂的编程知识,人人都可以使用prompt工程成为AI大师。本文只探讨prompt工程,不涉及模型训练等内容。只讨论文本生成,不涉及图像等领域。