Dataphin 是阿里巴巴旗下的一个智能数据建设与治理平台,旨在帮助企业构建高效、可靠、安全的数据资产。在V4.2版本中,Dataphin敏捷版上线助力企业打造轻量版数据中台,打通数据资产管理和消费,陪伴企业迈入数据高价值应用新阶段。
推理性能的提升涉及底层硬件、模型层,以及其他各个软件中间件层的相互协同,因此了解大模型技术架构的全局视角,有助于我们对推理性能的优化方案进行评估和选型。
通义灵码2.0引入了DeepSeek V3与R1模型,新增Qwen2.5-Max和QWQ模型,支持个性化服务切换。阿里云发布开源推理模型QwQ-32B,在数学、代码及通用能力上表现卓越,性能媲美DeepSeek-R1,且部署成本低。AI程序员功能涵盖表结构设计、前后端代码生成、单元测试与错误排查,大幅提升开发效率。跨语言编程示例中,成功集成DeepSeek-R1生成公告内容。相比1.0版本,2.0支持多款模型,丰富上下文类型,具备多文件修改能力。总结显示,AI程序员生成代码准确度高,但需参考现有工程风格以确保一致性,错误排查功能强大,适合明确问题描述场景。相关链接提供下载与原文参考。
MCP 的价值是统一了 Agent 和 LLM 之间的标准化接口,有了 MCP Server 的托管以及开发态能力只是第一步,接下来重要的是做好 MCP 和 Agent 的集成,FunctionAI 即将上线 Agent 开发能力,敬请期待。
本文将展示如何基于阿里云PAI灵骏智算服务,在通义千问开源模型之上进行高效分布式继续预训练、指令微调、模型离线推理验证以及在线服务部署。
DataphinV3.14支持传统数据库调用,带来全新高效研发体验,及时全面的数据保护、自定义监控和审批让数据治理更灵活自由。
多模态理解模型具有广泛的应用,比如多标签分类、视频问答(videoQA)和文本视频检索等。现有的方法已经在视频和语言理解方面取得了重大进展,然而,他们仍然面临两个巨大的挑战:无法充分的利用现有的特征;训练时巨大的GPU内存消耗。我们提出了MuLTI,这是一种高度准确高效的视频和语言理解模型,可以实现高效有效的特征融合和对下游任务的快速适应。本文详细介绍基于MuLTI实现高效视频与语言理解。
近日,元象发布其首个Moe大模型 XVERSE-MoE-A4.2B, 采用混合专家模型架构 (Mixture of Experts),激活参数4.2B,效果即可媲美13B模型。该模型全开源,无条件免费商用,支持中小企业、研究者和开发者可在元象高性能“全家桶”中按需选用,推动低成本部署。