本文阐述了阿里云表格存储(Tablestore)如何通过其向量检索服务应对大规模数据检索的需求,尤其是在成本、规模和召回率这三个关键挑战方面。
本文将从两个常见的大模型翻车问题入手解析这些问题背后体现的大模型技术原理,并解释了为什么会导致这些问题,接着我们利用CoT(思维链)方法解决这些问题并基于上述原理试图剖析CoT方法起作用的可能原因,最后提出【理由先行】风格这一简单有效的Prompt Trick。
文章探讨了如何利用多模态大模型和工程优化手段提升物流理赔业务效率。核心方案包括:通过多模态RAG技术实现图片查重,结合异步调用方法优化货损识别功能。
基于PAI-DSW快速启动Stable Diffusion WebUI,创作你的专属冬日主题AI画作!
本文将以Yuan2.0最新发布的Februa模型为例进行测试验证,用更小规模的模型达到更好的效果。
在今天这样以AIGC为代表的AI时代下,了解训练场景对于存储的具体诉求同样是至关重要的。本文将尝试解读WEKA的一个相关报告,来看看AIGC对于存储有哪些具体的性能要求。