漏斗分析当下已被广泛应用于产品运营分析过程中,成为用户增长、客户流失、留存转化等的重要分析方法。 常见的漏斗分析过程如下图所示,当产品或者运营活动发布后, 通过收集运营数据、并建立漏斗模型,然后根据漏斗模型进行统计和分析,定位问题,从而进行对应的优化迭代,并持续跟踪,最终实现用户增长、产品优化等目标...
广义上的链路成本,既包含使用链路追踪产生的数据生成、采集、计算、存储、查询等额外资源开销,也包含链路系统接入、变更、维护、协作等人力运维成本。为了便于理解,本小节将聚焦在狭义上的链路追踪机器资源成本,人力成本将在下一小节(效率)进行介绍。
MSE 云原生网关默认提供了丰富的 Metrics 指标大盘,配合阿里云 Prometheus 监控提供开箱即用的完整可观测性能力,能够帮助用户快捷、高效的搭建自身的微服务网关与对应的可观测体系。
本文由日志关键词告警出发,介绍了使用SLS进行关键词监控告警配置,并且介绍了几种常见的配置方法,可以覆盖关键词监控的大部分场景。
大数据快速增长的需要泛日志(Log/Trace/Metric)是大数据的重要组成,伴随着每一年业务峰值的新脉冲,日志数据量在快速增长。同时,业务数字化运营、软件可观测性等浪潮又在对日志的存储、计算提出更高的要求。从时效性角度看日志计算引擎:数仓覆盖 T + 1 日志处理,准实时系统(搜索引擎、OLA...
最近一年,小玉所在的业务部门发起了轰轰烈烈的微服务化运动,大量业务中台应用被拆分成更细粒度的微服务应用。为了迎接即将到来的双十一大促重保活动,小玉的主管让她在一周内梳理出订单中心的全局关键上下游依赖,提前拉...
时序引擎在可观测场景中的重要性Metrics作为IT可观测性数据的三剑客之一,是可观测场景的重要组成部分,相比Log、Trace数据,具备成本更低、数据源更丰富、适用面更广的特点,SLS在2年多前发布了时序存储引擎,并完全兼容了Prometheus的语法。目前已经有1万+的用户、10万+的实例,每天...